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A Computational Appendix

We solve the model building on the methods described in Achdou et al. (2021).

A.1 Steady state

Define k = a+ λ(1− f)pd as the distance from the borrowing limit. Construct tensor grids

over the state variables (k, d, z). Then the steady state policy function is constructed as

follows:

1. Start with an initial guess of the value function v(k, d, z) and the value conditional on

making an adjustment v∗(k, d, z).

2. Solve for the optimal consumption and saving decisions when not adjusting. Compute

vk both as a forward difference vfk and as a backward difference vbk. At the boundaries

of vfk and vbk impose that the drift of k is zero. Invert vk(k, d, z) = Uc(c, d) to solve for

cf (k, d, z) and cb(k, d, z), and the corresponding drift of k, sf (k, d, z) and sb(k, d, z).

∗Contact: McKay: alisdair.mckay@mpls.frb.org; Wieland: jfwieland@ucsd.edu
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Finally, let c0(k, d, z) be the consumption consistent with zero drift. Pick among the

candidates based on the following rule:

(a) If sf < 0 and sb < 0 pick cb, sb.

(b) If sf > 0 and sb > 0 pick cf , sf .

(c) If sf < 0 and sb > 0 pick c0, s0.

(d) If sf > 0 and sb < 0 pick the candidate that yields a larger value for the Hamil-

tonian.

Using the solution, compute the felicity function u(c, d).

3. Construct the transition matrix A based on the endogenous drifts of k and the exoge-

nous drifts and shocks to d, z. See Achdou et al. (2021) for details.

4. The HJB equation can now be written as min{ρv − u − Av, v − v∗} = 0, and solved

using an LCP solver for v. We use Yuval Tassa’s solver http://www.mathworks.com/

matlabcentral/fileexchange/20952.

5. Compute optimal choice of d′ conditional on adjusting and the corresponding v∗ =

maxd′ v(k′, d′, z), where k′ = k + (1− f)(1− λ)pd− (1− λ(1− f))pd′.

6. Repeat steps 1-5 until convergence.

7. To obtain the steady state distribution, convert the policy functions for k′ and d′

conditional on an adjustment to index form. Fractions of an index determine the

weights we assign to each index.

8. Create a matrix Cnoadj = A − diag(θ). Then set all the columns in Cnoadj that corre-

spond to adjustment points to zero. Define Aadj = A − Cnoadj. This matrix contains

the mass at adjustment points that needs to be reallocated to the nodes of the optimal

k′, d′. We assign this mass to the nodes surrounding k′, d′ based on the index fractions

in the previous step. This yields a matrix of adjustments Cadj. The transition matrix

is then C = Cnoadj + Cadj.

9. Solve 0 = CΦ for the steady state distribution Φ.
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A.2 Jacobians

The kth column of the Jacobians hold the impulse response function with respect to a shock

k − 1 periods in the future. The dimension of the Jacobian described here will be T × T .

The procedure largely follows Auclert et al. (2019) but we need to compute the Jacobian

numerically since our model features non-differentiable policy rules.

1. Start with a shock T periods in the future and solve the policy function backwards, by

repeating steps 1-5 given the terminal condition vT+1 = v. Each iteration reduces t by

dt. Continue until t = 0 is reached.

2. Take the whole sequence of policy functions from v0 to vT . Repeat steps 7-8 for

each period of the IRF and record outcomes for each period. This yields the IRF for

the last column (T) of the Jacobian. Note that the initial distribution Φ0 requires a

modification if p0 6= 1. The distribution of k needs to shift since k = a− λpd and a, d

are fixed in that instant.

3. For each t, if the adjustment thresholds change, then all the mass in Φt that is in

the new adjustment region must be immediately shifted to its new location using the

procedure in step 8. Call the new distribution Φ̂t. Then compute Φt+dt = Φ̂t+CtΦ̂t dt.

Repeat this step until t = T .

4. Repeat the previous two steps using the sequence of policy functions for vk to vT

followed by k− 1 periods of the steady state policy function vT+1. This yields the IRF

for the T − k column.

5. Conduct this procedure for a shock to G, p, Y , r, rb.

6. For the productivity shock only the initial distribution gets rescaled, so there is no

need to compute a policy function backward.

A.3 General Equilibrium

Following Auclert et al. (2019) we compute the partial equilibrium Jacobians for all outcome

variables given news at time 0 to one-time deviations to rs, r
b
s, Gs, Ys, ps, with rows corre-

sponding to the quarter in which the outcome is measured and columns corresponding to
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periods in which the deviation occurs. Since we express the model variables relative to pro-

ductivity Zt, the productivity shock causes a rescaling of the initial aggregate distribution,

which we capture by a Jacobian with a single column. Using matrix algebra we can then

solve for the impulse response functions in general equilibrium by incorporating the per-

sistence of exogenous variables and the necessary endogenous price and income movements

that satisfy (10) and (12).

B Estimation

The data selection and estimation strategy largely follows Berger and Vavra (2015).

B.1 Data

Observables. We use PSID data from 1999 through 2009. Our set of observables from

the PSID, Zdata
it , are net liquid assets ait, the value of the durable stock dit, and annualized

consumption expenditures over the following wave c̄i,t,t+2.

Real nondurable consumption is nominal nondurable consumption in the PSID deflated

by the BEA price index for nondurables (NIPA table 1.1.4). Nominal nondurable consump-

tion is the sum of food expenditures, utility expenditures, home insurance, transportation

expenditures, property taxes, health expenditures, child care expenditures, and education

expenditures. We exclude any loan or lease payments from transportation expenditures to

align the definition of nondurables with our model.

Real durable holdings are the sum of real house values and real vehicle values. Real

house values are reported nominal house values deflated by the OFHEO national house price

index. For renters we convert rent to a house value using the national house-to-rent ratio from

Davis et al. (2008) available at http://www.aei.org/housing/land-price-indicators/.

The PSID records the net wealth of up to three vehicles per household. We sum these values,

add total vehicle debt (detailed below), and deflate the sum with the BEA price index for

motor vehicles (NIPA table 1.2.4).

Real liquid asset holdings are the sum of cash and deposit holdings, stock holdings, and

bond holdings, deflated by the nondurables price index.
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We construct net real liquid assets by subtracting real debt from housing and vehicles.

Mortgage debt is directly reported and we deflate it using the nondurables price index. We

construct existing vehicle debt from the initial loan amount on all three cars and subtract

the number of payments made times the average payment amount. In less than 1% of cases

this results in a negative debt value, in which case we set vehicle debt to zero.

Housing adjustments come from either moving or a significant addition or repair. The

PSID records the month and year of the most recent move since either the last interview

(pre-2003) or since January two years ago. If a move is recorded and the move falls after the

previous interview, then we code it as a housing adjustment for the current wave; otherwise

it is an adjustment in the previous wave. When the move falls in the month of the interview

we break the tie based on whether the interview was in the first or second half of the month.

For significant additions and repairs we record them as housing adjustments in the wave

that they are reported.

Car adjustments are set to one if any one of the three reported cars has been acquired

since the previous wave. This is the case if the most recent car’s acquisition date is after

the previous wave’s interview date, or (if there is insufficient information using the date) a

new car has been acquired less than three years ago and it was not reported in the previous

wave. We weight a housing adjustment by 0.9 and car adjustments by 0.1.

Sample selection. We only keep head of households since the data is reported at the

household level. We drop heads of households 21 and younger, as well as households present

for fewer than 3 waves. This selection helps with the estimation of household fixed effects.

We drop households with zero durable holdings, or those with missing information on any

variable. We winsorize all variables at the 5th and 95th percentile. The sample weight is the

household weight in the PSID.

Household fixed effects. We demean durable holdings by the households average durable

holdings over the sample. This accounts for permanent differences in tastes for durables

across households, which are not part of the model. We also divide nondurable consumption,

liquid asset holdings, and real debt holdings by a household’s average nondurable consump-

tion over the sample. This helps account for permanent differences in income, which are

again not part of the model.
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Consistency with national aggregates. We divide all variables by average nondurable

consumption in the sample. We then multiply each scaled variable (durables, liquid assets,

debt) by a factor so that the sample average aligns with national aggregates from the fixed

asset tables (durable-to-nondurable-consumption ratio) and the flow of funds (liquid-asset-to-

nondurable-consumption and debt-to-nondurable-consumption). The rescaling is necessary

because the PSID collects data for 72% of nondurable expenditures on average (Li et al.,

2010). Further, households appear to overestimate the value of their vehicles (Czajka et al.,

2003).

B.2 Estimation Algorithm

1. Pick a given intensity of match quality shocks θ. Calibrate the discount rate ρ, the

fixed cost f , and the preference for durables ψ to match the targets for net assets, the

probability of adjustment, and the durable-stock-to-nondurable-consumption ratio.

2. Forecast the probability of adjustment P (a, d, y) over the next two years. Also forecast

the average nondurable consumption expenditure c̄ for each initial state (a, d, y) over

the next two years. From the latter we obtain a steady-state distribution G(a, d, c̄).

3. Regress the optimal durable stock d∗ in the model on a, a2, d, c̄, d/c̄ weighted using the

steady-state distribution. The vector of estimated coefficient is β.

4. Add measurement error to the model variables a, d, c̄ using three independent Gaussian

quadratures. This yields a new distribution Ĝ(a, d, c̄) which includes measurement

error.

5. Compute gaps ω = d∗−d for each point in the distribution Ĝ. Integrating over ω using

Ĝ yields the pdf f(ω) in the model. Similarly integrating the probability of adjustment

P (a, d, y) over ω using Ĝ yields the hazard rate h(ω) in the model.

6. In the data combine reported a, d, c̄ and our estimates β to predict d∗ and the durable

gap ω = d∗ − d. Use the sample weights to compute f(ω) and the adjustment hazard

h(ω).

7. Compute loss function L =
∑

ω w(ω)[|fmodel(ω) − fdata(ω)| + |hmodel(ω) − hdata(ω)|]

where the weight is w(ω) = 1
4
(fmodel(ω) + fdata(ω))(hmodel(ω) +hdata(ω)). This weight-
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Figure A.1: Density of the durable gap ω = d∗ − d, where d∗ is the optimal durable choice
conditional on adjusting and d the initial durable stock. Shaded areas are 95% confidence
bands.

ing function attaches more weight to bins the greater the fraction of adjustments ac-

counted for by that bin. Conversely, we attach little weight to regions in which both

model and data predict few adjustments.

8. Repeat steps 4,5, and 7 using a range of values for the standard deviation of the

measurement error. Then pick the value that results in the smallest loss in 7.

9. Repeat steps 1-8 using a range of values for θ. Pick the θ with the smallest loss in 8.

10. To construct standard errors, sample 1000 new datasets with replacement from the

original dataset. Repeat steps 6 and 7 for each dataset, record the loss-minimizing

value for θ and the associated density and hazard function from both data and model.

Figure A.1 displays the density of gaps at our estimated parameters.

C Data Appendix

C.1 Variables for Impulse Response Functions

In this section we detail how we construct the variables for the empirical impulse response

functions to monetary policy shocks in Figures 2, 3 and 4 of Section 3. We obtained the
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data from the the St Louis Fed FRED database. The variable identifiers are listed in Table

1.

Variable Name FRED Series Code

Population B230RC0Q173SBEA

Income (GDP) GDPC1

Federal Funds Rate FEDFUNDS

Consumer Durable Expenditure PCDG

Residential Investment PRFI

Consumer Nondurable Expenditure PCEND

Consumer Service Expenditure PCES

Consumer Housing Services Expenditure DHSGRC0

Durable Price Index DDURRD3Q086SBEA

Residential Investment Price Index B011RG3Q086SBEA

Nondurable Price Index DNDGRG3M086SBEA

Services Price Index DSERRG3M086SBEA

Services Price Index: Housing DHUTRG3Q086SBEA

Consumer Expenditure: Motor Vehicles DMOTRC1Q027SBEA

Motor Vehicles Price Index DMOTRG3Q086SBEA

House Price Index USSTHPI

Residential Investment: Permanent Site A943RC1Q027SBEA

Residential Investment: Other A863RC1Q027SBEA

Residential Investment Price Index: Other A863RG3Q086SBEA

Table 1: Variable names and FRED series code.

To construct real durable and nondurable expenditure, we proceed as follows. The prob-

lem is one where we have two components of nominal expenditure Yt = X1t + X2t (e.g.,

durable expenditure equals consumer durables plus residential investment), and their re-

spective price indices P1t and P2t. We want to construct the price index Pt for Yt.

We first construct the growth rate of nominal spending, ∆yt = ∆ ln(Yt) = ln(Yt) −

ln(Yt−1), and of the price indeces, ∆p1t and ∆p1t. Define the share of good 1 in nomi-

nal expenditure, s1t = X1t

Yt
. Then the growth rate of the aggregate price index is ∆pt =

s1,t−1∆p1t + (1− s1,t−1)∆p2t, from which we can construct the aggregate price index Pt. The

growth rate of real expenditure is ∆yt − ∆pt, from which we can construct aggregate real

expenditure. We convert all real expenditure to per capita by dividing by population.

For the price series of residential investment and consumer services we make specific

modifications. We separate residential investment into investment into new structures and

other residential investment. For investment into new structures we use the FHFA national
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house price index to capture changes in the price of land as well as the price of the new

structure. For other residential investment we use the associated price index from the BEA.

The weights are based on nominal expenditures in new residential structures and other

residential investment and calculated as above.

For consumption of services we remove housing services because housing services in the

model are obtained from durables and not counted in Ct. To do so we follow the same

procedure as above for the housing and non-housing component of services. But rather than

adding, we subtract the housing component, Yt = X2t−X1t. The share of rent in nondurable

expenditure is s1t = −X1t

Yt
. With these two modifications, we can calculate real expenditure

and the price index as above.

The relative price series for durables is the price of durables divided by the price of

nondurables and services. The real interest rate is defined in terms of nondurables. It is the

federal funds rate net of realized nondurable inflation over the next four quarters.

C.2 PSID: Housing Adjustment Probability

We use the Panel Survey of Income Dynamics (PSID) to construct a time series for the

probability of housing adjustments. We use data from 1969-1997 when the survey frequency

is annual. We keep only people who are heads of household and those who are in the Survey

Research Center (SRC) sample.

We use the moved since spring series to create a record of adjustments. If moved since

spring is true, we record an adjustment for that year. If moved since spring is false, we

record no adjustment for that year.

Following Bachmann and Cooper (2014), we set values to missing if the observation

does not have a tenure status or is lag does not have a tenure status. For example, if their

observation is in the year 1992, we will set the adjustment series to missing if we do not know

whether the head of household was owning or renting in either 1991 or 1992. We create a

time series of the probability of adjustment by aggregating the panel using the family weight.
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C.3 CEX: Car acquisition probability

We use the consumer expenditure (CEX) survey from 1980-2017 to construct a quarterly time

series of the probability of a household acquiring a car or truck (used or new). We download

pre-compiled files from the BLS for 1996 onwards and earlier raw files from ICPSR. We clean

the micro-data files following Coibion et al. (2017).

In the expenditure files we sum the UCC codes 450110 (new cars), 450210 (new trucks),

460110 (used cars), 460901 (used trucks). All expenditure series are net of trade-in value.

This definition aligns with the BEA definition of motor vehicle expenditure. Using the

household weights, total motor vehicle expenditure implies by the CEX tracks BEA personal

consumption motor vehicle expenditure very well.

We construct the probability of adjustment by setting an indicator equal to 1 whenever

a household’s motor vehicle expenditures are positive, and aggregating the indicator using

household weights.

D Robustness of Impulse Response Functions

In each plot of Figure A.2 we compare our baseline impulse response function for GDP (blue

line) against an alternative specification (red line). In Figure A.2a we drop the deterministic

trend. This helps allay concerns that we are biasing the model towards stationarity (Sims,

1996). In Figure A.2b we include only four lags of the dependent variable and the monetary

shock (vs 16 in the baseline) to address concerns that we may overfit the data. And in

Figure A.2c we restrict the sample to the post-Volcker period, 1984-2016. Due to the shorter

sample we reduce the lag length to four in that last case. For each of these three alternative

specifications, the estimated response is close to our baseline estimates both in economic

and statistical terms. In particular, all alternative specifications display an initial increase

in GDP and subsequent reversal.
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Figure A.2: Robustness of the impulse response function for GDP estimated in Section 3.
The blue line depicts the baseline specification and the red line the alternative specification.
Dashed lines are 95% confidence intervals. In panel (a), the alternative specification drops
the deterministic time trend. In panel (b), the alternative specification includes four lags of
the dependent variable and the monetary policy shock (as opposed to 16 in the baseline).
In panel (c), the alternative specification is estimated over 1984-2006 and with four lags.
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E Impulse Response Functions for rt and pt

We estimate the impulse response of the real interest rate in terms of nondurable goods,

rt and the relative durable price, pt to a Romer-Romer monetary policy shock. For these

impulse responses we make use the equivalence result from (Plagborg-Møller and Wolf, 2021)

who show that VARs and local projections yield the same impulse response up to the horizon

of included lags (16 quarters in our case). The benefit of using a VAR is that it generates

smoother impulse responses beyond 16 quarters, which is useful when feeding these paths

into the household decision problem in Section 3. Other than generating smoother response

beyond 16 quarters, the impulse response functions estimated by the VAR are very similar

to impulse response functions estimated by local projections.

We estimate two bivariate VARs, in which the monetary shock is ordered first. The second

variable is respectively the real interest rate and the change in the relative price of durables.

The VAR also includes a time-trend and the standard errors are block-bootstrapped and

bias-corrected following Kilian (1998). Figure A.3 plots these impulse response functions.

Figure A.3: Impulse response function of the real interest rate in terms of nondurables (left
panel) and the relative durable price (right panel) to a Romer-Romer monetary policy shock.

12



F Details of the General Equilibrium Model

F.1 The Labor Market

The labor demand curve of each labor type j is,

ljt = Lt

(
Wjt

Wt

)−ϕ
where the aggregate wage is equal to

Wt =

(∫ 1

0

W 1−ϕ
jt dj

) 1
1−ϕ

.

The union’s problem can be stated in terms of piece rates W̃jt = Wjt/Zt

max
{µjt}

∫ ∞
t=0

e−ρt
∫ 1

0

[
uc(cit, sit)

W̃jtZt
Pt

ljtzit − Ωtv(ljt)−
Ψ

2
ΩtLtµ

2
jt

]
di dt

subject to

dln W̃jt = µjt dt

ljt = Lt

(
W̃jt

W̃t

)−ϕ
.

Using the definition of Ωt, we can rewrite the objective as

max
{µjt}

∫ ∞
t=0

e−ρtΩt

[
W̃jt

Pt
ljt − v(ljt)−

Ψ

2
Ltµ

2
jt

]
dt

To analyze the union’s problem, treat qjt ≡ ln W̃jt as the state and µjt as the control. The

Hamiltonian is

H = Ωt

eqjt
Pt
Lt

(
eqjt

W̃t

)−ϕ
− v

Lt(eqjt
W̃t

)−ϕ− Ψ

2
Ltµ

2
jt

+ λjtµjt,

where λjt is the co-state. The necessary conditions for optimality are

λjt = ΨΩtLtµjt

dλjt − ρλjt dt = −(1− ϕ)Ωt
W̃jt

Pt
ljt dt− ϕΩtv

′ (ljt) ljt dt.
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Imposing symmetry and the relationships Pt = W̃t and Yt = ZtLt yields the nonlinear

Phillips curve

dπt =

[
ρ dt− dYt

Yt
− dΩt

Ωt

]
πt −

(ϕ− 1)

Ψ

[
ϕ

ϕ− 1
v′ (Lt)− 1

]
dt.

Linearizing around a zero inflation steady state in which L̄ = v′−1
(
ϕ−1
ϕ

)
and Ȳt = ZtL̄ yields

dπt = ρπt dt− ϕ

Ψ
v′(L̄)η

(
Yt − Ȳt
Ȳt

)
dt,

where 1/η is the Frisch elasticity. Letting κ = (ϕ−1)η
Ψ

gives (9).

F.2 Market Clearing

Nondurables market clearing:

Yt =

∫ 1

0

cit di+Mt +Gt + (rbt − rt)
∫ 1

0

aitI(ait<0) di.

Durable goods market clearing:

Xt =

∫ 1

0

(
ddit
dt
− δdit

)
di+ f

∫ 1

0

Id′it 6=ditdit + ν

∫ 1

0

dit di.

Bond market clearing: ∫ 1

0

ait di = At.

G Data Filtering Using the MA Representation

In this appendix we implement a restricted version of the Kalman filter to recover aggregate

shocks. We impose three restrictions on the standard Kalman filtering framework. First,

we do not allow for measurement error in the observation equation. Second, we assume

that either (a) the system is initially in steady state at the start of the sample or (b) the

researcher knows the initial state with certainty and knows the transition path of the model

back to steady state. If the system is stable this restriction is not costly in situations where

the researcher has a sufficient burn-in period at the start of the sample so that the effect of

the initial state dissipates before the sample of interest begins. Third, we assume that there

are at least as many states as there are observables. Under these restrictions, the Kalman

smoother coincides with the Kalman filter.
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The Filtering Algorithm. Consider a dynamic system with a state space representation

Xt = AXt−1 +Bεt (1)

Yt = CXt (2)

where X is the state, ε is a vector of i.i.d. mean-zero innovations and Y is the observed data.

ε and Y are dimension N × 1 and X is dimension M × 1. A, B, and C are conformable

matrices. We will require that CB is invertible, which requires that there are at least as

many states as there are observables.

We assume that this internal description of the model is unknown to the researcher.

Instead, the researcher has access to an external description of the system, i.e. impulse

response functions. Let R(τ, i) be the response of Yτ to a unit change in the ith element of

ε0. The impulse responses are given by

R(τ, i) = CAτB1i,

where 1i is the standard basis vector in the ith dimension. R(τ, i) is a N × 1 vector. Let

R(τ) be a N × N matrix where the ith column is R(τ, i). Notice that R(τ) = CAτB. The

researcher may also have access to an estimate of the effects of the initial state of the system

S(τ) = CAτ+1X−1 for τ ≥ 0. In practice one may wish to assume that the system is initially

in steady state so S(τ) = 0 for all τ . For a stationary system, where At → 0 as t → ∞,

the role of the initial state will diminish over time so if one has a sufficient burn-in period

of data assuming the system starts in steady state will have limited effect on the results.

The researcher has data {Yt}Tt=0 and wishes to recover an estimate of {εt}Tt=0. The filtering

then proceeds recursively as follows: Let Q0 = S(0). At date 0, solve (1) and (2) for

ε0 = (CB)−1 (Y0 − CAX−1) and notice that we can rewrite this as ε0 = R(0)−1 (Y0 −Q0) .

Now suppose that we have solved for {ετ}t−1
τ=0 and we wish to solve for εt. Let Qt = CAXt−1

and by repeated substitution of (1) we have Qt =
∑t−1

τ=0R(t− τ)ετ + S(t). From (1) and (2)

we then have

εt = R(0)−1 (Yt −Qt) . (3)

Relationship to the Kalman Filter. Let X̂t|t−1 be the point estimate of Xt given in-

formation through t − 1. The Kalman filter updates this estimate as (Hamilton, 1994, eq.
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13.2.15)

X̂t|t = X̂t|t−1 + Pt|t−1C
′ (CPt|t−1C

′)−1
(
Yt − CX̂t|t−1

)
,

where Pt|t−1 is the covariance matrix of X̂t|t−1. Because we assume that the initial state

(or rather its effects) is known and there is no measurement error, once Yt−1 is observed,

εt−1 is known and therefore the only reason X̂t|t−1 is uncertain is because of εt. Therefore

Pt|t−1 = BΣB′ where Σ is the covariance matrix of ε. Plugging this in above we have

X̂t|t = X̂t|t−1 +BΣB′C ′
(
CBΣB′C ′

)−1
(
Yt − CX̂t|t−1

)
= X̂t|t−1 +B (CB)−1

(
Yt − CX̂t|t−1

)
︸ ︷︷ ︸

=εt

.

Now notice that the update to X̂t|t−1 is just Bεt so we have

εt = (CB)−1
(
Yt − CX̂t|t−1

)
= (CB)−1

(
Yt − CAX̂t−1|t−1

)
where the second line follows from Hamilton eq. 13.2.17. Using the logic above, Xt−1 is

known after Yt−1 is observed so X̂t−1|t−1 = Xt−1 so the above equation becomes

εt = R (0)−1 (Yt −Qt)

in the notation of our filtering algorithm, which is the same as (3).

Incorporating the ELB. Let R be a T ×T matrix that maps a path of output gaps into

a path of real interest rates that satisfy the monetary rule. The Phillips curve and monetary

policy response to inflation is embedded inside R. With the ELB, we have

−→r t = max

{
R
(
M−→r +Qεt +

−→
Ŷ t|t−1

)
+ S(ηt−1, εt), r

}
, (4)

where −→r t ≡ (rt,Etrt+1, · · · ,Etrt+T−1)′, Q maps the current shock to a path of output gaps

under constant real rates,
−→
Ŷ t|t−1 is the forecast of output gaps given past shocks and mone-

tary news, and S is a function that captures the effect of the exogenous term in the interest

rate rule. Given the N × 1 data vector Yt, we solve a system of N + T equations such that

Yt = CBεt +Qt as above and such that (4) holds where the unknowns are the elements of εt

and −→r t. We solve this system iteratively using partial updates.
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H Derivation and Decomposition of r∗

Derivation of Equation (14). Consider an abstract representation of our model expressed

in discrete time steps corresponding to the time intervals on which we compute the model:

Ŷt = Y(ht,Φt)

ht = H(~rt, ηt)

Φt+1 = T (Φt, ht)

ηt+1 = F(ηt, ε
η
t+1).

The first equation states that the output gap, Ŷt, is a function, Y , of the household policy

rules, ht, and the distribution of households over individual states, Φt. In our model, a house-

hold chooses whether or not to adjust its durable stock and if so the level of durables, how

much to consume in nondurables, and how much to save in liquid assets. All of these deci-

sion rules are contained in the collection ht. The second equation states that the policy rules

depend the vector of current and expected future real interest rates, ~rt ≡ (rt,Etrt+1, · · · )′,

and the exogenous aggregate states, ηt ≡ (gt, Gt − Ḡ, rbt − r̄bt )′. We extend the analysis to

allow for prices other than real interest rates to affect the decision rules below, but we begin

with a simpler formulation here for ease of exposition. The third equation shows how the

distribution of individual states evolves as a function of the household decisions. In het-

erogeneous agent models, the evolution of the distribution depends on individual decisions

as well as the stochastic process of idiosyncratic shocks. In our formulation, the effect of

idiosyncratic shocks is embedded within the function T . Finally, the fourth equation gives

the law of motion for the exogenous aggregate states where εηt+1 is the vector of innovations

to the aggregate stochastic processes, which are uncorrelated.1

Current and future real rates affect the policy rules at t. Previous real interest rates

do not affect the policy rules because the policy rules are conditional on individual states.

However, past interest rates affect the output gap at t through their effect on the distribution

of individual states Φt. For example, if low interest rates in the past caused households to

stock up on durables, then this is reflected in the distribution of households over levels of

1For example, the first element is σZ

(
WZ

t+1 −WZ
t

)
.
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durables.

We linearize the system around steady state:

Ŷt = Yhht + YΦ(Φt − Φ̄)

ht = Hr~rt +Hηηt

Φt+1 − Φ̄ = TΦ(Φt − Φ̄) + Thht

ηt+1 = Fηηt + εηt+1.

As with Φt, ht can be interpreted as a vector that gives a discrete representation of the

decision rules as in the Reiter (2009) method. Using the linearized system, the forecast at

date t of the output gap at date t+ s for s ≥ 0 is given by

EtŶt+s = Yh
(
HrEt~rt+s +HηF sηηt

)
+

s−1∑
k=0

YΦT s−k−1
Φ Th

(
HrEt~rt+k +HηFkη ηt

)
+ YΦT sΦ(Φt − Φ̄),

where Yh is the partial Jacobian of Ŷt with respect to ht and so on. As ~rt ≡ (rt,Etrt+1,Etrt+2, · · · )

we can write Et~rt+s = Ss~rt where Ss is a shift operator that chops off the first s elements of

~rt. Using this shift operator and rearranging yields

EtŶt+s =

YhHrSs +
s−1∑
k=0

YΦT s−k−1
Φ ThHrSk

~rt (5)

+

YhHηF sη +
s−1∑
k=0

YΦT s−k−1
Φ ThHηFkη

 ηt + [YΦT sΦ ] (Φt − Φ̄).

This equation shows that the forecast of the output gap at t+ s is (to a first order approx-

imation) a linear function of the expected real interest rate path, the exogenous states ηt,

and the distribution Φt. Stacking equation (5) for s ≥ 0 then yields equation (14) with the

terms in square brackets forming the rows of M, Q, and D, respectively.

Derivation of Equation (16). As shown in the text, the solution for r∗ for a given set of

states ηr,Φt is,

~r∗t = −M−1
(
Qηt +D(Φt − Φ̄)

)
.
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To determine r∗ as a function of past real rates and the exogenous states η, we solve out

for the endogenous state Φt. Solving the state backwards yields,

Φt − Φ̄ = Thht−1 + TΦ(Φt−1 − Φ̄)

= ThHr~rt−1 + ThHηηt−1 + TΦ

(
Thht−2 + TΦ(Φt−2 − Φ̄)

)
=

t−1∑
k=0

(
T kΦ ThHr

)
~rt−1−k +

t−1∑
k=0

(
T kΦ ThHη

)
ηt−1−k

with Φ0 = Φ̄.

We next show how to express the first two terms in terms of the matrices M and Q.

Start with the term that captures the history of interest rates,

D

 t−1∑
k=0

(T kΦ ThHr)~rt−1−k

 = YΦ


I

TΦ

T 2
Φ
...


 t−1∑
k=0

(T kΦ ThHr)~rt−1−k



= YΦ

t−1∑
k=0


(T kΦ )

(T k+1
Φ )

(T k+2
Φ )
...

 ThHr~rt−1−k

To see the connection with the monetary transmission matrix, we split M into two

components, one capturing how the evolution of the state and the other the policy function,

M =


0

YΦThHr

YΦTΦThHr + [0 YΦThHr]

YΦT 2
ΦThHr + [0 YΦTΦThHr] + [0 0 YΦThHr]

...

+


YhHr

[0 YhHr]

[0 0 YhHr]
...


For general s = t + 1 the term of past real rate expectations can then be split into a

component involving interest rate innovations up to time s−1 and one component involving
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expected interest rates from s onward,

D

 s∑
k=0

(T kΦ ThHr)~rt−1−k

 =
s−1∑
k=0

M[1+s−k..,1..s−k]

Ek


rk
...

rs−1

− Ek−1


rk
...

rs−1




+
s−1∑
k=0

(M[1+s−k..,1+s−k..] −M[s−k..,s−k..])Ek~rs

We take a similar approach for expressing the historical contribution of the exogenous

states η. It will again be convenient to write the matrix Q as the sum of the state component

and the policy component,

Q =


0

YΦThHη

YΦTΦThHη + YΦThHηFη
YΦT 2

ΦThHη + YΦTΦThHηFη + YΦThHηF2
η

...

+


YhHη

YhHηFη
YhHηF2

η
...


Then we can express the historical contribution of the exogenous states η to the states

solely in terms of past shocks and the Q matrix,

D

 t−1∑
k=0

(
T kΦ ThHη

)
ηt−1−k

 = YΦ

t−1∑
k=0


(T kΦ )

(T k+1
Φ )

(T k+2
Φ )
...

 ThHηηt−1−k =
t−1∑
k=0

(Q[2+k..,..] −Q[1+k..,..]Fη)ηt−1−k

=
t−1∑
k=0

Q[2+k..,..]ηt−1−k −
t−1∑
k=0

Q[1+k,..]Fηηt−1−k = −QFηηt−1 +
t−1∑
k=0

Q[2+k..,..]ε
η
t−1−k

Substituting our solution for the state into the equation for r∗ yields,

~r∗t = −M−1

t−1∑
k=0

M[1+t−k..,1..t−k]

Ek

rk
...

rt−1

− Ek−1


rk
...

rt−1




−M−1

t−1∑
k=0

(M[1+t−k..,1+t−k..] −M[t−k..,t−k..])Ek~rt −M−1

t−1∑
k=0

Q[1+k,..]ε
η
t−k

This equation tells us that r∗ is not just a function of the shocks (last term), but it can also

vary with how past interest rates were set in the past (first term) and with past expectations

of current and future rates (second term).
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We next solve out for these expectations of current and future rates by assuming that

they are set to close all output gaps from time t onwards, consistent with the definition of

r∗. Thus, the expectations of future rates are now superscripted with a star,

~r∗t = −M−1

t−1∑
k=0

M[1+t−k..,1..t−k]

Ek

rk
...

rt−1

− Ek−1


rk
...

rt−1




−M−1

t−1∑
k=0

(M[1+t−k..,1+t−k..] −M[t−k..,t−k..])Ek~r∗t −M−1

t−1∑
k=0

Q[1+k,..]ε
η
t−k

Taking expectations of this r∗ vector yields

M[1+s..,1+s..]Et−s~r∗t = −
t−s∑
k=0

M[1+t−k..,1..t−k]

Ek

rk
...

rt−1

− Ek−1


rk
...

rt−1




−
t−s−1∑
k=0

(M[1+t−k..,1+t−k..] −M[t−k..,t−k..])Ek~r∗t −
t∑

k=s

Q[1+k,..]ε
η
t−k

We can now write expectations recursively,

Et−s~r∗t = Et−s−1~r
∗
t −M−1

[1+s..,1+s..]M[1+s..,1..s]

Et−s

rt−s

...

rt−1

− Et−s−1


rt−s

...

rt−1




−M−1
[1+s..,1+s..]Q[1+s,..]ε

η
t−s

Repeated substitution of the expectation updating into the r∗ equation then yields the

formula in the text,

~r∗t = −
t−1∑
k=0

M−1
[1+t−k..,1+t−k..]M[1+t−k..,1..t−k]

Ek

rk
...

rt−1

− Ek−1


rk
...

rt−1




−
t∑

k=0

M−1
[1+k..,1+k..]Q[1+k,..]ε

η
t−k
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Extension with More Endogenous Prices. Consider the expanded system:

Ŷt = Y(ht,Φt)

ht = H(~rt, ~wt, ηt)

Φt+1 = T (Φt, ht)

ηt+1 = F(ηt, ε
η
t+1)

0 = P(ht,Φt),

where wt is a vector of prices (other than real interest rates) at date t and ~wt ≡ (wt,Etwt+1, · · · )′.

The second equation therefore allows for other prices besides interest rates to affect house-

hold policy rules. P(ht+s,Φt+s) = 0 gives the market clearing conditions for the prices in

wt+s. If wt+s is a vector of prices, then P is a vector-valued function. The prices in wt can

include tax rates and the P can include government budget constraints or fiscal rules that

set the tax rate.

Now let’s take ~rt as given and solve for the resulting ~wt. Proceeding as with the forecast

of the output gap we have (to a first order approximation) the market clearing conditions at

t+ s are

0 =

PΦ

s−1∑
k=0

(
T kΦ ThHrSs−k−1

)
+ PhHrSs

~rt +

PΦ

s−1∑
k=0

(
T kΦ ThHwSs−k−1

)
+ PhHwSs

 ~wt
+

PΦ

s−1∑
k=0

(
T kΦ ThHηρ

s−k−1
η

)
+ PhHηρ

s
η

 ηt + PΦT sΦ(Φt − Φ̄)

Stacking this equation for s ≥ 0 yields

~0 =MP~rt +NP ~wt +QPηt +DP (Φt − Φ̄)

Solve this for ~wt

~wt = −N−1
P

[
MP~rt +QPηt +DP (Φt − Φ̄)

]
(6)

Forecasting the output gap as before, we arrive at an analogous expression to our simpler
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case without endogenous prices:

EtŶt+s =

Y ′Φ s−1∑
k=0

(
T ′kΦ ThH′rSs−k−1

)
+ YhH′rSs

~rt
+

Y ′Φ s−1∑
k=0

(
T ′kΦ ThH′ηF s−k−1

η

)
+ YhH′ηF sη

 ηt + Y ′ΦT ′sΦ (Φt − Φ̄),

where we have redefined the matrices as follows:

Y ′Φ = YΦ − YhHwN−1
P DP

T ′Φ = TΦ − ThHwN−1
P DP

H′r = [I −HwN−1
P QP ]Hr

H′η = [I −HwN−1
P QP ]Hη.

Stacking these equations for s ≥ 0 yields

~̂
Yt =M~rt +Qηt +D(Φt − Φ̄)

For the decomposition we use a similar approach of substituting out for ~wt. We can build

the decomposition iteratively

Φt =
t−1∑
k=0

T ′kΦ ThH′r~rt−1−k +
t−1∑
k=0

T ′kΦ ThH′ηηt−1−k

Since the addition of endogenous prices leads to identical expressions up to a redefinition

of the matrices, the same steps as in the simpler case can be followed.

I Model Impulse Response Functions

Figure A.4 plots the model impulse response functions.

J Robustness to Aggregate Nonlinearities

In this appendix we investigate the sensitivity of our results to allowing for nonlinear ag-

gregate dynamics. We do so by conducting a version of our analysis in the fully nonlinear
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Figure A.4: Impulse response functions for the output gap Ŷ , the change in the durable ex-
penditure share relative to potential GDP ∆sx, the real interest rate r, the borrowing spread
rb, and the contemporaneous natural rate of interest r∗ following a shock to productivity eZ ,
non-household demand eG, the monetary policy rule er, and the borrowing spread er

b
.
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version of our model. Solving the nonlinear model is substantially more difficult than solving

the linear model and moreover our filtering approach relies on linearity. Therefore, in this

robustness analysis we conduct a somewhat simpler exercise and we use the full-information

version of the model to ease the computational burden. In particular, we perform our infer-

ence procedure on a one-time shock. We proceed in the following steps:

1. Feed in a one-time permanent reduction of productivity of -16% into the nonlinear

model and find the paths for the real interest rate, the relative durable price, and

aggregate income that are consistent with market clearing. We obtain a 2.8% output

gap and an 78% percent drop in the endogenous adjustment probability on impact.

2. Use the linear model to filter the model generated data and find the implied path of

r∗ as we do in the main text.

3. Feed the r∗ path from the previous step into the nonlinear model and find the paths

of the relative durable price and aggregate income that are consistent with market

clearing.

Denote the vector of output gaps from step 3 as Ŷ NL. If the output gap from step 3 is close

to zero, then our procedure for inferring r∗ using the linear approximation to the model is

accurate because it is indeed the path for interest rates that is needed to close the output

gap, which is the definition of r∗. To gauge how important the error is for our calculations

we use the linear model to convert the residual output gap to an adjustment to the r∗ path

of M−1Ŷ NL. Pre-multiplying by M−1 gives the change in real interest rates that would be

needed to close the residual output gap.

Figure A.5 plots r∗ and r∗ +M−1Ŷ NL. Because monetary policy is less powerful in the

recession, the linear model initially underestimates how much the real interest rate needs

to fall to close the output gap. However, after 10 quarters the two real rate paths follow a

very similar pattern. This suggests our baseline analysis likely underestimates the drop in

r∗ during the Great Recession, but the forecast of persistently low interest rates is robust to

state dependence.

There are two reasons that our results are fairly robust to the state dependence implied by

the nonlinear model. First, while monetary policy is indeed less powerful during the recession
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Figure A.5: Path for r∗ following a permanent drop in productivity in the full information
model. The blue line depicts the r∗ path when we use the linear model for filtering the
impulse response functions and calculating the corresponding r∗. We feed this path into the
nonlinear model, calculate the residual output gap Ŷ NL, and convert it into r∗ space using
M−1Ŷ NL. The red line depicts the r∗ from the linear model plus this residual, M−1Ŷ NL.

in the nonlinear model, this effect dissipates rather quickly. Second, even if monetary policy

is persistently less powerful there are two offsetting effects on our calculation of r∗. When

we filter the data we use the observed movement in r when we infer what shock hit the

economy. If we overestimate the power of monetary policy we overestimate the size of the

shock the central bank is reacting to. However, the movement in interest rates that is needed

to counter a given shock is underestimated. These two considerations partially offset each

other.
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