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Abstract

We estimate an income process that is consistent with key facts on individual

income risk and its variation over the business cycle. In particular, the estimated

process generates income �uctuations that display (i) �at and acyclical variance,

(ii) volatile and procyclical skewness, (iii) very high kurtosis, and (iv) a moderate

rise in cross-sectional inequality over the life cycle, all consistent with the US data.

Furthermore, the income process captures the predictable nature of business cycle

income risk: income changes during a business cycle episode are partly predicted by

income levels before that episode. The estimated process features a time-varying

distribution of innovations as well as a factor structure for business cycle exposure.

Incorporating the estimated process into a business cycle model adds only one state

variable�as in the workhorse persistent-plus-transitory income process�making it

a tractable option for modelers.
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1 Introduction

Recent years have seen a surge of interest in heterogeneous-agent models for business

cycle analysis. Many of these models build on the Bewley-Huggett-Aiyagari tradition, in

which uninsurable idiosyncratic income risk is a key driver of ex post heterogeneity across

individuals. Traditionally, the calibration of the income process in these models has been

based on the second moment properties of income dynamics estimated from survey-based

panel data. In recent years, the increasing availability of large administrative panel data

sets enabled a more precise estimation of the properties of the higher-order moments of

income growth, including how they vary over the business cycle. These recent studies

have found that the distribution of income growth rates has mostly �at and acyclical

variance, procyclical skewness, very high kurtosis, and unequal exposure to the business

cycle across the income distribution (a factor structure).1 In this paper, we estimate an

income process that can capture these features of the data, yet is tractable enough to be

incorporated in macroeconomic models.

The income process we consider allows for three key departures from the workhorse

persistent-plus-transitory Gaussian model of income dynamics. First, our modeling al-

lows for fat-tailed declines in income that partially revert after a period, leaving behind

a potentially long-lasting �scarring� e�ect. While our modeling is purely statistical in

nature, these shocks can capture the types of patterns commonly associated with nonem-

ployment: a transitory income loss during nonemployment and a partial recovery with

reemployment, followed by a persistent scarring e�ect. The scarring e�ect allows the

model to generate a left tail of the income growth distribution that is thicker than the

right tail, as seen in the data (see Figure 2). Second, our income process features a

persistent �rst-order autoregressive process (AR(1)) with innovations drawn from a nor-

mal mixture distribution that allows the �exibility to generate nonnormalities (skewness

and excess kurtosis) in income dynamics. We �nd that introducing time variation by

allowing the mean of the normal distributions in the mixture to depend on average wage

income growth each year provides a good �t to business cycle variation in the data mo-

ments, including the procyclical �uctuations in skewness. Third, the model includes a

factor structure, whereby workers in di�erent parts of the income distribution can exhibit

1See, for example, Guvenen, Ozkan, and Song (2014); Arellano, Blundell, and Bonhomme (2017);
Harmenberg (2021); Kramarz, Nimier-David, and Delemotte (2021); Guvenen, Pistaferri, and Violante
(2022).
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di�erent sensitivities (or exposures) to aggregate �uctuations. This factor structure cap-

tures a systematic component in idiosyncratic income �uctuations, which has empirical

support in the data (see Figure 4).2

An important advantage of our speci�cation is that it introduces only one state

variable to a dynamic programming problem�just as the workhorse persistent-plus-

transitory model does�while capturing signi�cantly more complex dynamics. In Section

6, we discuss the steps involved in incorporating this income process into dynamic models.

The features of the income data that we emphasize in this paper have important

implications for a number of applied problems. For example, leptokurtic idiosyncratic

income risk has an important e�ect on the value of social insurance (Saez, 2001; Golosov,

Troshkin, and Tsyvinski, 2016) and interacts with borrowing and saving decisions, with

consequences for the distribution of wealth and marginal propensities to consume (Ka-

plan, Moll, and Violante, 2018). Another example is that the unequal incidence of

business cycle �uctuations has important implications for the welfare cost of business

cycles (e.g., Storesletten, Telmer, and Yaron, 2001; Krebs, 2003, 2007), the conduct of

stabilization policy (e.g., McKay and Reis, 2021; Bhandari, Evans, Golosov, and Sargent,

2021), and asset pricing (e.g., Mankiw, 1986; Constantinides and Du�e, 1996; Schmidt,

2014; Constantinides and Ghosh, 2016), among others.

We estimate the econometric model by targeting a list of data moments that capture

the levels of the �rst four moments of the individual income growth distribution as

well as the time variation in the �rst three moments over three decades, starting in

the early 1980s. These moments have been estimated from panel data on individual

income histories from Social Security Administration (SSA) records for male workers,

reported by Guvenen, Ozkan, and Song (2014) and Guvenen, Karahan, Ozkan, and Song

(2021). We present results for model speci�cations that build in complexity, starting from

the persistent-plus-transitory Gaussian model and culminating with our full benchmark

model. In doing so, we show how the model elements we add allow us to �t particular

moments in the data. Some features of the data, and therefore some aspects of our

income process, may be more or less critical in a particular application.

While idiosyncratic risk in heterogeneous-agent business cycle models has tradition-

ally been modeled as a linear-Gaussian income process that is estimated to match the

2See, e.g., Guvenen, Ozkan, and Song (2014); Guvenen, Schulhofer-Wohl, Song, and Yogo (2017) for
the US and Bell, Bloom, and Blundell (2021) for the UK.
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second moments of income dynamics, some recent studies have started to incorporate

higher-order moments. The income process in Kaplan et al. (2018) captures the leptokur-

tic nature of income growth rates but does not feature any business cycle variation apart

from the level of income. McKay (2017), McKay and Reis (2021), and Catherine (2021)

incorporate income processes that allow for procyclical skewness of income growth, but

do not target the high kurtosis of income growth rates and do not allow for the factor

structure in the exposure to the business cycle. Bhandari et al. (2021) allow for a factor

structure but do not target higher-moment properties of income risk.

The paper is organized as follows. Section 2 presents the features of the data that we

seek to match with our income process. Section 3 presents the parametric speci�cation

of the process. Section 4 gives the details of the moments we seek to match and describes

our estimation procedure. Section 5 presents the estimation results and describes how

the components of the process relate to particular aspects of the data. Section 6 provides

guidance on how the income process can be incorporated into the dynamic programming

problems commonly used in heterogenous agent models of the business cycle.

2 Motivating Facts

In this section, we present the key features of individual income dynamics that we

believe are of most relevance to heterogeneous-agent models of business cycles. We take

these empirical moments from Guvenen et al. (2014) and Guvenen et al. (2021), who

estimated them from panel data on the income histories of US (male) workers from US

Social Security records covering the period from 1978 through 2011.

The �rst feature is the age pro�le of within-cohort income inequality, shown in Figure

1. This age-inequality pro�le has been a key target for heterogeneous-agent models to

match since it was �rst documented (e.g., Deaton and Paxson (1994); Storesletten et al.

(2004)). The pro�le is informative about both the persistence and size of (persistent)

income shocks. Figure 1 shows that the cross-sectional variance of log income grows

nearly linearly with age. Under the assumption that all individuals share the same

deterministic lifecycle pro�le for income, a linear age-variance pro�le implies random walk

behavior for persistent shocks.3 Moreover, the dispersion in incomes within a cohort also

informs us about the dispersion of individual �xed e�ects. If we allow for heterogeneity

3If zt = zt−1 + ηt−1, the cross-sectional variance at age t is var(zt) = var(zt−1) + σ2
η, which grows

linearly with t.
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Figure 1 � Within-Cohort Variance of Log Income over the Life Cycle
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Note: The cross-sectional variance of log income increases almost linearly over the life cycle. The blue
line represents the variance of log earning within each age group. The dashed line shows the �t of a
linear regression of cross-sectional variance on age.

in income growth rates (or heterogeneous income pro�les, HIP), the shape of the age-

variance pro�le informs us about the combined e�ects of dispersed deterministic income

pro�les and the accumulated persistent shocks.

While the lifecycle variance pro�le speaks to the persistence and variance of income

innovations, it does not characterize the full shape of the distribution from which they

are drawn. Figure 2 shows the empirical log-density of annual growth in log income

superimposed on a Gaussian (normal) distribution with the same mean and variance.4

The distribution has high kurtosis, as demonstrated by a dramatic peak at the center

and long, thick tails�a stark contrast to the Gaussian distribution. Moreover, both

tails are approximately linear, which corresponds to a double-Pareto distribution in the

tails. In fact, this linearity is present over a very wide range, between annual log growth

rates of 1 and 4 on the right side (roughly corresponding to 3-fold to 55-fold increases in

income) and between �1 and �4 on the left (corresponding to 68% to 98% declines). The

�gure also makes clear how much a Gaussian density understates the likelihood of tail

4The empirical density is for the 1995�1996 change and is taken from Guvenen et al. (2021), who
argue that the �gure is qualitatively the same in other years in their sample.
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Figure 2 � Log Density of Annual Income Growth (with Double-Pareto Tails)
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Note: The �gure shows the distribution of one-year income growth between 1995 and 1996 ((Guvenen
et al., 2021)). The dashed lines show the �t of a linear regression of the log-density on the one-year log
change within the right and left tails. The dash-dot line shows a Gaussian distribution with the same
mean and variance as the empirical distribution.

shocks. For example, a log income decline of �2 (i.e., a decline of 86%) is 100 times more

likely (log likelihood ratio 4.6) in the data than what would be predicted by a Gaussian

distribution with the same variance as in the data.

Another feature of the empirical density is its asymmetry, which is evident in the

shape of the tails. The slope of the log-density is signi�cantly steeper in the right tail

(slope of �2.2) than in the left tail (slope of 1.4): negative income shocks have a fatter

tail than positive income shocks. Capturing the complex shape of this distribution�its

large variance, negative skewness, high kurtosis, and its long, asymmetric double-Pareto

tails�is one of our objectives.

We now turn to the business cycle variation in income dynamics. While average

income falls in a recession, the impact of business cycles is not felt equally across the

population. One manifestation of this unequal incidence is that the distribution of income

shocks changes in recessions. Using administrative data on individual income histories,

Guvenen et al. (2014) show that the variance of income growth rates is �at and largely
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Figure 3 � Skewness and Dispersion of Five-year Income Growth
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Note: The left panel displays the time series of Kelley skewness of the distribution of one-year (solid line)
and �ve-year (dashed line) income growth. The right panel shows the analogous standard deviations.
The plots are aligned with the �rst year of the time di�erenced data.

acyclical, whereas the skewness of income growth rates is strongly pro-cyclical. This

can be seen in Figure 3, which plots the Kelley skewness and standard deviation of one-

year and �ve-year income growth rates over time.5 The shaded regions depict NBER

recessions. In every recession, the skewness of one-year income growth falls signi�cantly,

while the standard deviation shows only limited �uctuations over time and no discernible

cyclical pattern. Procyclical skewness is a natural pattern to expect: during recessions,

large negative income shocks are more prominent while large income gains are not, and

vice versa during expansions.

The second dimension of unequal business cycle incidence is that the sensitivity of

a worker's income to aggregate �uctuations depends on the position of that worker in

the income distribution. This factor structure can be seen in Figure 4, which shows how

workers in di�erent parts of the income distribution fared during the Great Recession.

Speci�cally, workers are sorted into 100 percentile bins based on their �ve-year average

income before the recession started (2002 to 2006), as shown in the x-axis. The y-axis

shows the (log) change in the average income of each percentile group from 2007 to

5Kelley's skewness is a robust measure of skewness and is calculated as Sκ =
[(P90− P50)− (P50− P10)] /(P90− P10).
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Figure 4 � Factor Structure: Income Changes during the Great Recession Varied Sys-
tematically with Pre-recession Income Rank
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Note: The �gure plots the log income change during the Great Recession for prime-age males ranked by
their pre-recession average income (2002 to 2006). The income data are averaged within each percentile
bin before calculating the log di�erence between 2007 and 2010. The �gure shows income growth after
removing age e�ects, so the average income growth implied by the �gure will not match aggregate
income growth.

2010. The graph shows a clear systematic pattern. First, for workers below the 90th

percentile, the lower a worker's average income was before the recession, the larger was

the average income loss experienced during the Great Recession. The magnitude of this

systematic variation is large�those who entered the recession at the 10th percentile of

income lost 18 percentage points more than those who entered at the 90th percentile.

Because these losses are correlated with income levels, the factor structure causes a

widening of income inequality during the recession. However, and second, the pattern

reverses itself for workers in the top 10 percent: the higher a worker's average income

was before the recession the larger were the losses he experienced during the recession.

The magnitude of these losses was nearly as large as that of the losses in the bottom

10% of the distribution. As we show below, expansions show the mirror image pattern:

income gains are larger at the top and bottom than in the middle. The factor structure

we introduce into the income processes will aim to capture these systematic and highly

nonlinear variations.
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3 Income Process Speci�cation

In this section, we describe a stochastic income process that aims to capture the fea-

tures of the data described above. Much like the widely used linear-Gaussian processes,

the income process requires only a single individual state variable and is thus tractable

enough to incorporate into macroeconomic business cycle models. The general process

for log income, yi,t, is

yi,t = γi + zi,t + ζ̃i,t + [1 + f(γi + zi,t)]wt + κi(t− hi), (1)

where γi is an individual �xed e�ect distributed with standard deviation σγ; ζ̃i,t is a

transitory shock; zi,t is the persistent idiosyncratic state; and wt is the aggregate cyclical

component. The e�ect of the aggregate component on an individual's income is mediated

by the factor structure, f , a function of the �xed e�ect and the persistent state, which

evolves as an AR(1) process:

zi,t = ρzi,t−1 + η̃i,t (2)

with zi,0 = 0 as initial condition. The parameter ρ governs the persistence, and η̃i,t is

the innovation. The �nal term in (1) allows for heterogeneous income pro�les (HIP): κi

is the slope of the individual income pro�le distributed with standard deviation σκ, and

hi records the cohort year of the individual (the year he or she turns 25).

We allow for correlation between the transitory and persistent innovations, which

we interpret as �scarring� e�ects of the transitory shock. Speci�cally, we allow for two

independent shocks ζi,t and ηi,t that determine ζ̃i,t and η̃i,t according to

ζ̃i,t = (1− ψ)ζi,t

η̃i,t = ηi,t + ψζi,t,
(3)

where the parameter ψ determines the extent of the scarring e�ect.

Each of the elements of the income process plays a role in allowing us to �t the features

of the data that we highlighted in Section 2. A natural starting point for a model of labor

income dynamics is a simple persistent-transitory speci�cation with normal innovations,

which is a special case of our model if we assume that ζ and η are drawn from i.i.d.

normal distributions, there is no income scarring e�ect (ψ = 0), aggregate shocks a�ect

all individuals equally (f(γi + zi,t) ≡ 0), and income pro�les are restricted (κi = 0).
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While such a model can capture the mean and variance of income growth, it fails to

match the richer moments of the data described above.

Relative to that starting point, income scarring and a non-Gaussian distribution for

ζit allow the model to match the tails of the income distribution shown in Figure 2 and

thereby generate the high kurtosis of the distribution. We let ζit follow a �nonemploy-

ment� process in which ζit is equal to 0 with probability pζ and equal to log(1− ℓi,t) with
probability 1 − pζ , and ℓi,t is drawn from an exponential distribution with parameter λ

conditional on being in the interval [0, 1]. Intuitively, this shock represents a risk that an

individual's income will be cut by a factor 1− ℓi,t. This shock generates a long left tail of
income risk through its arrival (e.g., job loss) and a long right tail of income risk through

its departure (e.g., job gain). Second, we allow the transient income shock to have a

scarring e�ect on income if ψ > 0. As a result of this partial persistence, the individuals

that experience a negative income shock do not return to the same income level when

the negative shock disappears. This asymmetry can generate the steeper right tail of

income growth.

We assume a �exible distribution of innovations to the persistent component, η, which

allows the model to match the acyclical variance and procyclical skewness of income

growth as well as its excess kurtosis. We assume that η is drawn according to

ηi,t ∼


N(µη1,t, σ

η
1) with prob. pη1,

N(µη2,t, σ
η
2) with prob. pη2,

N(µη3,t, σ
η
3) with prob. pη3,

subject to pη1 + pη2 + pη3 = 1. The means change over time as driven by the latent variable

xt such that

µη1,t = µ̄ηt ,

µη2,t = µ̄ηt + µη2 − xt,

µη3,t = µ̄ηt + µη3.

The parameter µ̄ηt is a normalization such that Ei[exp{ηi,t}] = 1 in all periods. This

normalization implies that xt has no e�ect on mean income. When we estimate the

income process, we impose restrictions on µη2 and µη3 so that the �rst component of the
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mixture will a�ect the center of the distribution, and the second and third components

will a�ect the left and right tails, respectively. Following Catherine (2021), we posit

that xt = β∆wt, where β is a parameter that controls the extent of cyclical variation in

income risk.

The choice of a mixture of normal distributions balances richness and �exibility with

computational simplicity. In terms of �exibility, any density that satis�es mild regularity

conditions can be approximated by mixing a su�cient number of normals.6 Normal

mixtures allow for persistent income shocks to come from a rich distribution with a

shape that can vary with the business cycle. And while the additional richness comes

at the cost of estimating additional parameters, it can be incorporated into dynamic

programming problems with only minor extensions to the computational methods used

to integrate and simulate standard Gaussian distributions. Within the class of normal

mixture models, there are a number of parameters that could vary with the business

cycle. For example, the mixture probabilities or distribution variances could be cyclical,

though we have found that neither option works well to match the procyclical volatility

in skewness while also maintaining an acyclical variance. In contrast, shifting the means

in the manner above is able to generate both patterns observed in the data.

As for the factor structure, we allow the e�ect of a recession or expansion on an

individual's income to depend on his or her position in the persistent component of the

income distribution, given by q ≡ γi + zi,t. We model this exposure with the piecewise-

linear function f(q),

f(q) =

α1q if q < q̄

α2 (q − q̄) + α1q̄ if q ≥ q̄,

where q̄ is a kink point, α1 captures the slope of the factor structure below q̄, and α2

captures the slope above q̄. The piecewise-linear speci�cation allows �exibility to capture

the non-monotonic (V-shape or inverse V-shape) factor structure seen in Figure 4, which

we will see again in Figure 10 below.

We estimate each of these speci�cations while imposing that ρ = 1. This restriction

is without much consequence if lifecycle income pro�les are assumed to be homogeneous

(κi =0), as ρ would be estimated to be close to 1 even without this restriction, because

6See Ferguson (1973) for the classic theorem, which has been generalized in many directions. See,
for example, Bacharoglu (2010), who requires only continuity and compact valuedness of the real-valued
density, or Frühwirth-Schnatter (2006) for a textbook treatment with alternative conditions.
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the lifecycle pro�le of cross-sectional variance of income within a cohort is nearly linear in

age. The restriction that ρ is identical to 1 is convenient for applications with homothetic

preferences because it allows for a normalization that can further reduce the number of

state variables, as we explain in Section 6.

We also consider versions of several speci�cations with HIP, in which the linear re-

lationship between cross-sectional inequality and age is consistent with values of ρ < 1.

Because heterogeneity in κi contributes to accelerating dispersion in income within a

cohort over time, the linear lifecycle pro�le of the cross-sectional variance implies less

persistent income shocks.

4 Estimation

We �t the model using a simulated method of moments estimation procedure. For

a given parameter vector, we simulate a panel with 360,000 individuals per year. While

our empirical moments begin only in 1978, we begin the simulation in 1947 to provide

for a pre-sample burn-in period, as some of our moments refer to the cross-sectional

distribution of income. Our income process does not have age-dependent parameters,

but nevertheless we impose a �life cycle� in the simulation by simulating each individual

for 36 years starting with zi,t = 0.7 There are two reasons for this life cycle. First, some

of our speci�cations involve random walk shocks to z, and the life cycle structure keeps

the cross-sectional distribution of z stationary. Second, one of our data targets is the

growth of the cross-sectional variance of income over the life cycle. We assume a uniform

age distribution, so there are 10,000 individuals in each of the 36 age groups from ages

25 to 55.

The aggregate component wt varies over time, with consequences for the innovation

distribution and therefore for the income distribution going forward. We normalize w to

zero at the beginning of our simulation and then construct a time series by accumulating

the demeaned time series for average income growth (one-year changes) reported by

Guvenen et al. (2014).8

We target several types of moments. First, we target the shape of the income growth

7While we assume a deterministic length of life, applications can use a perpetual youth demographic
structure to avoid keeping track of age as a state variable.

8In our pre-sample period, we use the growth rate of real wages and salary compensation per worker
constructed from FRED series A4102C1Q027SBEA, CPIAUCSL, and PAYEMS.
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distribution using the 10th, 50th, and 90th percentiles of the distributions for one-year,

three-year, and �ve-year changes. We average these moments across all years, 1979 to

2011, for a total of nine moments. We also target a kurtosis of one-year income growth

of 20 and a kurtosis of �ve-year income growth of 12 (two moments). We target the

cross-sectional variance of income at ages 25, 35, 45, and 55 (four moments).

Second, we use two sets of moments to target the tails of the distribution. We

target the masses of one-year changes in log income above 1.2 and below �1.2 (two

moments). We also target the asymmetric slopes in the tails using an indirect inference

procedure. We estimate the density of one-year income growth using a histogram. We

then compute the slope of the tails by �tting two lines through the log density on the

domains [−4.0,−1.2] and [1.2, 4.0]. Figure 2 shows the lines we seek to match. We treat

the two slopes of these lines as targets.

Third, to capture cyclical risk, we use the full time series of Kelley's skewness for one-

year, three-year, and �ve-year income changes (93 moments in total). Finally, we target

the factor structure of business cycle incidence. For each business cycle episode, Guvenen

et al. (2014) construct a �gure analogous to Figure 4, using average income over the �ve

years before the business cycle episode to rank individuals in the distribution.9 For each

�gure, we �t a line between the 11th and 80th percentiles and another line between

the 80th and 100th percentiles. The two slopes of these lines are targets, totaling 14

moments across seven recession and expansion episodes.

The empirical moments are taken from (or in some cases constructed from) data

reported by Guvenen et al. (2014) and Guvenen et al. (2021), and the target values

are reported in Table III. We compute the squared percentage di�erence between the

simulated and data moments.10 In general, the moments are weighted equally, but with

a few exceptions; notably, the 93 skewness moments are down-weighted to put them

collectively on a more equal footing with the other moments. Appendix A provides

more details about the construction of the moments and the objective function. We

minimize the objective function using the TikTak global optimization algorithm discussed

in Arnoud et al. (2019).

9We use the data for the recessions of 1979-1983, 1990-1992, 2000-2002, and 2007-2010 and the
expansions of 1983-1990, 1992-2000, and 2002-2007.

10In a few cases, the data moments take values near zero and those are treated di�erently. See
Appendix A for more details.
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Table I � Model Summary

Key Components of Stochastic Process

Model ζ η ψ ρ σκ Factor Str.

(1) Gaussian Gaussian = 0 = 1 = 0

(2) Non-emp. Gaussian > 0 = 1 = 0

(3) Non-emp. Mixture > 0 = 1 = 0

(4) Non-emp. Mixture > 0 = 1 = 0 ✓

(5) Non-emp. Mixture > 0 ≤ 1 > 0

(6) Non-emp. Mixture > 0 ≤ 1 > 0 ✓

Notes: We estimate six models that each maintain di�erent speci�cations for six di�erent aspects of the model. The
transient income innovation, ζ, is either Gaussian distributed or a nonemployment shock. The persistent income innovation,
η, is distributed by either a simple Gaussian or a normal mixture distribution. The income scarring parameter, ψ, is either
assumed to be zero or estimated as a positive number. The persistence of the AR(1) process, ρ, is either assumed to be
1 or estimated as a number less than or equal to one. Wherever ρ is estimated, we calibrate a HIP process with σk > 0,
and wherever ρ is restricted to one, we assume homogeneous income pro�les with σk = 0. Finally, we estimate models
with and without a factor structure in exposure to the aggregate component of income.

5 Results

We estimate six models of increasing complexity, beginning with the canonical linear-

Gaussian model and gradually adding components. In the following subsections, we

discuss each model in turn. In Table I, we summarize the features of the six models.

Table II presents the parameter estimates for each model. For the most part, parameter

values are stable with the addition of more complexity to other aspects of the model.

In Table III, we present the targeted and predicted moments, with the exception of the

skewness time series and the factor structure. The lower panel of Table III shows the

objective function value as well as the contributions from each set of moments. Figures

5 to 11 show key moments for each model.

5.1 Model 1: Canonical (Permanent-Plus-Transitory) Gaussian

Model

Under Model 1, log income is normally distributed, as both η and ζ follow Gaussian

distributions. This speci�cation does a reasonable job of matching the growth of the

cross-sectional variance of income over the life cycle but cannot generate any of the excess
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Table II � Estimated Parameters

Model Speci�cations

Parameters (1) (2) (3) (4) (5) (6)

σγ St. dev. of �xed e�ects 0.776 0.646 0.597 0.604 0.630 0.623

σζ1 St. dev. for transitory shock 0.196 � � � � �

pζ 1 � Probability of nonempl. shock � 0.550 0.611 0.618 0.704 0.704

λ Transitory exponential parameter � 3.357 3.081 3.054 2.786 2.857

ψ Scarring e�ect of transitory shock � 0.094 0.151 0.166 0.377 0.351

pη2 Mix. probab. for persist. innov 2 � � 0.109 0.084 0.119 0.092

pη3 Mix. probab. for persist. innov 3 � � 0.062 0.018 0.074 0.049

ση1 Std. dev. for persistent innov. 1 0.086 0.103 0.010 0.030 0.056 0.049

ση2 Std. dev. for persistent innov. 2 � � 0.164 0.190 0.404 0.449

ση3 Std. dev. for persistent innov. 3 � � 0.192 0.195 0.415 0.225

µη1 Center for persistent component 1 � � �0.012 �0.034 0.006 0.024

µη2 Center for persistent component 2 � � 0.034 0.086 0.086 0.050

µη3 Center for persistent component 3 � � 0.181 0.304 0.254 0.498

β Loading on aggregate wage � � �7.948 �7.639 �8.839 �9.954

α1 Factor struct. slope, low income � � � �0.678 � �0.853

α2 Factor struct. slope, high income � � � 0.931 � 0.911

q Factor structure threshold � � � 0.745 � 0.594

ρ AR(1) coe�cient � � � � 0.810 0.822

Note: This table contains the estimated parameters for each model as speci�ed in Table I. In Model 1,
the transitory ζ shock is realized every period and has a Gaussian distribution.

kurtosis of income growth observed in the data. Relatedly, it vastly under-predicts the

mass in the tails of the income growth distribution, as can be seen from the histogram

shown in panel (a) of Figure 5. This model predicts so few simulated individuals in

the tails that we are unable to reliably compute the slopes of those tails. Panel (a) of

Figure 8 shows this model predicts a very low standard deviation of income growth. In

principle, this model could �t that moment, but with a Gaussian framework, there is a

tension between matching the cross-sectional variance of income levels and the dispersion

of income growth rates. A similar tension between estimates in levels and di�erences has

been observed by Heathcote et al. (2010). By construction, this model does not generate
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Table III � Targeted and Fitted Moments

US Data Model Speci�cations

Moments (1) (2) (3) (4) (5) (6)

P10, one-year change �0.434 �0.361 �0.448 �0.435 �0.426 �0.435 �0.419

P10, three-year change �0.585 �0.388 �0.486 �0.495 �0.485 �0.629 �0.604

P10, �ve-year change �0.631 �0.403 �0.517 �0.529 �0.52 �0.713 �0.681

P50, one-year change 0.020 0.002 0.015 0.009 0.014 0.018 0.018

P50, three-year change 0.061 0.007 0.020 0.012 0.016 0.016 0.019

P50, �ve-year change 0.103 0.023 0.035 0.021 0.025 0.027 0.032

P90, one-year change 0.474 0.365 0.435 0.434 0.432 0.465 0.451

P90, three-year change 0.705 0.402 0.487 0.513 0.518 0.663 0.635

P90, �ve-year change 0.848 0.449 0.552 0.591 0.599 0.773 0.746

Kurtosis, one-year change 20.00 3.000 22.73 23.28 23.88 22.00 23.18

Kurtosis, �ve-year change 12.00 3.000 17.78 16.83 16.97 10.81 11.66

Cross-sectional var., age 25 0.595 0.649 0.592 0.535 0.556 0.592 0.587

Cross-sectional var., age 35 0.719 0.723 0.711 0.692 0.717 0.746 0.736

Cross-sectional var., age 45 0.814 0.795 0.832 0.841 0.853 0.812 0.804

Cross-sectional var., age 55 0.905 0.872 0.953 0.974 0.991 0.922 0.917

Left-tail mass 0.024 0.00 0.024 0.024 0.024 0.023 0.022

Left-tail slope 1.260 � 1.282 1.282 1.294 1.246 1.284

Right-tail mass 0.015 0.00 0.021 0.018 0.018 0.016 0.015

Right-tail slope �2.035 � �1.482 �1.561 �1.551 �1.935 �1.850

Objective value 10.505 2.439 1.592 1.195 0.988 0.564

Quantiles 0.748 0.295 0.238 0.236 0.045 0.046

Kurtosis 1.286 0.251 0.189 0.210 0.020 0.026

Cross-sectional var. pro�le 0.100 0.035 0.187 0.157 0.017 0.011

Histogram 7.175 0.525 0.341 0.347 0.021 0.052

Skewness time series 0.699 0.833 0.143 0.143 0.185 0.136

Factor Structure 0.498 0.498 0.496 0.101 0.699 0.293

Notes: This table shows the model �t for each estimated model. The top panel displays all the individual targeted
moments with the exception of the time series for the Kelley skewness of one-year and �ve-year income growth and the
factor structure moments. The �rst column contains the targeted moments computed from SSA data (Guvenen et al.
(2014, 2021)), and subsequent columns show the implied values from the estimated models. The bottom panel shows the
weighted contribution of selected sets of moments to the objective function. The top row of the bottom panel shows the
total value of the objective function, including factor structure moments.
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Figure 5 � Log Density of Annual Income Growth

(a) Model 1: Gaussian Model
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Note: This �gure shows the �t of each model as speci�ed in Table I to the log density of one-year income
growth from 1995 to 1996. The dashed line is the empirical distribution (Guvenen et al., 2021), and the
solid line is the log density of income growth for 360,000 simulated individuals in each model.

any time series variation in the standard deviation or skewness of income growth, nor

does it generate a factor structure in business cycle incidence.

16



5.2 Model 2: Adding Nonemployment Shocks

Model 2 changes the distribution of the transitory shock to nonemployment shocks

with scarring e�ects. The estimates in column 2 of Table II imply that an individ-

ual receives a nonemployment shock, ℓit, with an annual probability of 45% and mean

λ−1 ≈ 0.30. The passthrough coe�cient, ψ, which determines the fraction of ζ that

leaves a permanent e�ect (through equation 3) is about 9.4%. Although this may seem

like a small number, keep in mind that log(1 − ℓit) can get very negative given the ex-

ponential distribution of ℓit, which has a very long tail, and the log transformation. For

example, each year, 8.6% of individuals see their income fall by 50% or more because

of the nonemployment shock alone, and 1.8% see their income fall to e�ectively zero,

corresponding to full year nonemployment.

As a result, Model 2 is able to generate thick and long tails and a more peaked center

of the income growth distribution, which provides a much closer match to the empirical

density than Model 1�compare Figure 5(b) to 5(a). This is also re�ected in the kurtosis

values of one- and �ve-year income growth, which rise from the Gaussian benchmark of

3 in Model 1 to 22.7 and 17.8 in Model 2 (Table III), somewhat exceeding their empirical

counterparts (of 20 and 12, respectively). While the model �ts the left-tail slope almost

exactly, it overstates the thickness of the right tail (with a slope of �1.48 versus �2.04

in the data), leading to the higher kurtosis. Income scarring is helpful in making the

right tail steeper than the left tail, but the estimation cannot push this mechanism too

far without generating too much dispersion in persistent income changes. Below, we will

show that allowing for HIP relaxes this tension by making the persistent component of

income risk less persistent (ρ < 1).

The lower panel of Table III shows a substantial improvement in the objective function

from Model 1 to Model 2 that comes from better �tting the histogram, the kurtosis, and

the quantiles. Like Model 1, this one does not generate any business cycle dynamics in

the higher moments of the distribution of income growth, but it is better able to match

the levels of the standard deviations of income growth (panel (b) of Figures 8 and 9).11

11We also estimated a version of Model 2 that features the nonemployment shock but without the
scarring component (ψ ≡ 0 in equation 3). This model does not perform as well, with the main
deterioration in �t coming from the histogram, kurtosis, and the lifecycle variation in inequality. The
estimates are reported in Tables B.I and B.II in the appendix.
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Figure 6 � Skewness of Annual Income Growth

(a) Model 1: Gaussian Model
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Note: This �gure shows the �t to the time series of the Kelley skewness of one-year income growth
for each model, as speci�ed in Table I. The dashed line represents the Kelley skewness of the empirical
distribution of income growth with respect to one year prior (Guvenen et al. (2014)), and the solid line
is the simulated time series of the Kelley skewness of one-year income growth in each model.
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Figure 7 � Skewness of Five-year Income Growth

(a) Model 1: Gaussian Model
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Note: This �gure shows the �t to the time series of the Kelley skewness of �ve-year income growth
for each model, as speci�ed in Table I. The dashed line represents the Kelley skewness of the empirical
distribution of income growth with respect to 5 years prior (Guvenen et al. (2014)), and the solid line
is the simulated time series of the Kelley skewness of �ve-year income growth in each model.
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Variances of Log Income and Change in Log Income: Resolving a Puzzle

A well-known puzzle in the income dynamics literature is that the persistent-plus-

transitory Gaussian model cannot simultaneously �t the variances (and covariances) of

log income and log income changes (Heathcote et al. (2010)). This can be seen in our

results for Model 1 above: while the model does a reasonably good job of �tting the

variances of log income levels at ages 25, 35, 45, and 55 in Table III, it understates the

variances of one- and �ve-year log income changes by 60% to 80% (obtained by squaring

the standard deviation lines in Figures 8(a) and 9(a)).12 The introduction of the non-

employment shock in Model 2 goes a long way towards resolving this puzzle: the model

improves the �t to the variances of log income levels relative to Model 1 (Table III), while

now matching the variance of one-year log income change exactly and understating that

of �ve-year change by only 30%.

5.3 Model 3: Introducing Normal Mixture with Time Variation

Model 3 changes the distribution of the persistent shock to a time-varying mixture of

normal distributions. The estimated distribution features one shock, η1, that is realized

very often (with about 83% probability) and two other shocks that are realized with

10.9% and 6.2% probability. The frequent shock is very small, with about 1% standard

deviation, whereas the other two shocks are much larger, with 16.4% and 19.2% standard

deviations. These estimates are consistent with the plausible idea that in most years,

persistent income changes are small, with large jumps happening less frequently. The

estimates of the scarring e�ect component are not a�ected greatly by the introduction

of the normal mixture, with the passthrough coe�cient rising somewhat (from 9.4% to

15.1%) and the shock frequency declining slightly (from 45% to 39%).

The main improvement that this model o�ers is to generate procyclical skewness and

acyclical variance of income growth rates. Figures 6(c) and 7(c) show the model is able to

closely match the dynamics of Kelley's skewness for both one-year and �ve-year income

growth. The model is able to generate an acyclical standard deviation for both one-

year and �ve-year income growth rates (Figures 8(c) and 9(c)). The levels of standard

deviation remain virtually the same as those in Model 2, with the one-year matching

the data exactly and �ve-year understating its empirical counterpart by 10 log points

12Alternative explanations for this puzzle have been proposed based on the treatment of job-to-job
transitions (Daly et al., 2022) and time aggregation (Crawley et al., 2022).
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Figure 8 � Standard Deviation of Annual Earnings Growth

(a) Model 1: Gaussian Model
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Note: This �gure shows the �t to the time series of the standard deviation of one-year income growth for
each model, as speci�ed in Table I. The dashed line represents the standard deviation of the empirical
distribution of income growth with respect to one year prior (Guvenen et al. (2014)), and the solid line
is the simulated time series of the standard deviation of one-year income growth in each model.
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Figure 9 � Standard Deviation of Five-year Income Growth

(a) Model 1: Gaussian Model
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Note: This �gure shows the �t to the time series of the standard deviation of �ve-year income growth
for each model as speci�ed in Table I. The dashed line represents the standard deviation of the empirical
distribution of income growth with respect to 5 years prior (Guvenen et al. (2014)), and the solid line
is the simulated time series of the standard deviation of �ve-year income growth in each model.
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(about 0.6 versus 0.7). In addition to matching the procyclical skewness and acyclical

variance of income growth, this model also leads to a slight improvement in the shape

of the distribution as measured by the quantile, kurtosis, and histogram components of

the objective function.13

5.4 Model 4: Adding the Factor Structure

Model 4 adds a factor structure for business cycle incidence. Compared with those in

the middle of the income distribution, individuals with either low or high levels of (the

persistent component of) income are more exposed to cyclical �uctuations in income.

Figure 10 shows the �t of Model 4 for each of the seven business cycle episodes. The

top row of the �gure shows recessions, and the bottom row shows expansions. In deep

recessions (1979�1983 and 2007�2010), there is a clear upward slope through the middle

of the income distribution. This indicates that lower-income individuals experienced

larger income losses. The model successfully captures this pattern. The slope is less

evident in the milder recessions (1990�1992 and 2000�2002), which were also shorter,

and the model also captures this. The di�erence between these episodes is captured by

the change in the aggregate component of income, wt, which falls more in deep recessions,

making the uneven incidence more important. At the top end of the income distribution,

recessions have di�erent characters. In the 2000�2002 and 2007�2010 recessions, there is

a large fall in income at the top of the distribution. The model is able to match this in the

Great Recession but not in the 2000�2002 recession. Again, this di�erence in predictions

is due to the larger movement in wt in the Great Recession.
14 In the 1979�1983 recession,

the data do not show a decline in top incomes despite the large drop in wt.

The pre-2000 expansions show income growth at the bottom and top of the income

distribution, and the model is able to match these patterns fairly well. The 2002-2007

expansion does not show a factor structure for the middle of the income distribution but

does show strong growth at the top. During this episode, average income grew slowly

(wt rises by only 10 log points), and as a result, the unequal incidence in the model is of

13In order to show the extent to which the improvement in �t over Model 2 comes from the time-
varying moments, we estimate a speci�cation with a static normal mixture distribution. As seen in
Appendix Tables B.I and B.II, this process (Model 3') still leads to a modest improvement in the �t
over Model 2�with the objective value falling from 2.44 to 2.26. The main improvements come from a
better �t of the tails of the distribution and the average skewness.

14Adding other aggregate factors, e.g. stock indices, that may a�ect very high incomes can help to
better �t the cyclical income risk at the top of the distribution.
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little importance.

Overall, the model is able to capture the business cycle factor structure and account

for some, though not all, of the di�erences across business cycle episodes. Adding the

factor structure does not detract from the model's ability to �t other moments, as can

be seen in the lower panel of Table III, which shows that all the other components of the

objective function are little changed relative to Model 3.

Factor structure without time-varying moments. Finally, in some applications,

researchers may want to model the factor structure without the time variation in skew-

ness. We have estimated a version of Model 4 that corresponds to this case, which shuts

down time variation in the normal mixture distribution (β ≡ 0) but keeps the factor

structure. Although the �t is slightly worse than Model 4's, even ignoring the moments

with time variation, the �t to the factor structure remains remains largely intact. Be-

cause this speci�cation may be useful to researchers, we include the parameter estimates

in Appendix B (Model 4' in Table B.I).

5.5 Model 5: Adding HIP

Persistence in the income process leads to a tension between matching the roughly

linear increase in cross-sectional variance over the life cycle and the broader empirical

distribution of income changes. In particular, the models that assume ρ = 1 have a

di�cult time matching the right tail of the distribution of annual income growth (Figure

5). This tension is also re�ected in the �t of the standard deviation and kurtosis of

�ve-year changes.

Model 5 adds HIP to Model 3 (i.e. which does not feature the factor structure). We

set σκ = 0.015, based on the empirical estimates in Baker (1997) and Guvenen et al.

(2021), among others. We relax the restriction of ρ = 1 and estimate ρ to be 0.80.

Despite the low value of ρ, the model continues to �t the nearly linear growth in the

cross-sectional variance of income, as shown in Table III. This is possible because HIP

gives rise to a convex variance pro�le that o�sets the concave contribution from the

persistent income shocks.

Comparing panels (c) and (e) of Figure 5, we can see this model better captures the

shape of the income distribution. In particular, the right-tail slope is much closer to the

data. In Table III, we see the �t of P10 and P90 for the three-year and �ve-year changes
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is also much improved. Comparing panels (c) and (e) of Figure 6, we see the �t to the

time series of Kelley's skewness for one-year income growth improves as well, but the �t

for �ve-year changes (shown in Figure 7(e)) is somewhat worse, as the amplitude of the

�uctuations in skewness is somewhat attenuated. On the other hand, the level of the

standard deviation of �ve-year changes rises to match the data more closely (see Figure

9 (e)).

5.6 Model 6: HIP with a Factor Structure

Our last speci�cation introduces the factor structure alongside HIP components. The

estimate of ρ is nearly unchanged at 0.794. The improvements to the model �t that HIP

brings remain mostly intact (see Table III and Figures 5 through 9). However, the �t

to the factor structure is worse compared with that of Model 4 (see Figure 11). In

particular, the model struggles to �t the greater exposure of low-income individuals to

recessions. With ρ < 1, there is a tendency for mean reversion by which low-income in-

dividuals experience faster income growth. During a recession, the factor structure must

overcome this force. On the other hand, the faster growth for low-income individuals in

expansions is naturally generated by mean reversion without a strong factor structure in

business cycle incidence, implying a weaker factor structure. The lower panel of Table

III shows that the objective function contribution from the factor structure is larger for

this speci�cation than for Model 4. Nevertheless, the other components of the objective

function improve, and overall this model gives a substantially better �t.
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6 Suggestions to Modelers

The income process we have presented is quite rich, and not all of its elements may

be relevant for a given application. We recommend Model 5 as a useful benchmark if the

factor structure of the business cycle is not a focus of the analysis. If the factor structure

is of special importance, we recommend Model 4, as it �ts the factor structure better

than Model 6. If parsimony is of particular importance, Model 3 a�ords a normalization

that reduces the number of state variables in models with homothetic preferences (see

below).

We now give some guidance on how one can incorporate this income process into the

dynamic programming problem that is at the core of many heterogeneous-agent business

cycle models. The Bellman equation for such a problem could take the form

V (m, z, S; γ, κ) = max
c,a′

{u(c) + βE [V (R(S ′)a′ + Y (z′, ζ ′, γ, κ, S), z′, S ′; γ, κ)]}

subject to

c+ a′ = m

a′ ⩾ a,

where m is cash on hand, R(S) is a rate of return that may depend on the aggregate

state S and Y (z, γ, κ, S) gives the level of income. This income function is given by

exp(y), where y is determined by Equation 1 with wt = w(S). The persistent component

z evolves according to Equation 2. The parameter a is a borrowing limit.

From the structure of the problem, one can see that the income process a�ects the

dynamic program in two places. First, we need to evaluate income, Y (z, ζ, γ, κ, S), for

a given set of state variables. This just requires evaluating the expression in Equation

1, which is straightforward. The second place the income process a�ects the dynamic

programming problem is in taking the expectation over z′ and ζ ′. A quadrature method

is likely the most practical approach for this. To take the expectation, one can create

quadrature nodes and weights for di�erent outcomes of η′ and ζ ′. With the time-varying

mixture of normals for the distribution of η′, some of the quadrature nodes for η′ will

depend on S and S ′. See McKay and Reis (2021) for an example of such a quadrature

approach.
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In a special case with ρ = 1, homothetic u(·), and no factor structure f(z + γ) = 0,

the level of income does not a�ect the decision problem. In this case, one can greatly

simplify the problem by normalizing all variables by exp(z + γ) and eliminating z as a

state variable of the problem (see, e.g., Carroll et al. 2017).

7 Discussion

Recent analyses of income dynamics have highlighted several features of the data

that are not captured by the income processes typically used in heterogeneous agent

models of the business cycle. In particular, income growth rates show double-Pareto

tails, high kurtosis, procyclical skewness, acyclical variance, and a factor structure in

business cycle incidence. We have presented a model for an income process that can

capture these aspects of the data while retaining the simplicity of a single state variable

as in commonly used processes.

Each of the elements that we add to the income process has its own implications

for the analysis of the business cycle. The kurtosis of income risk has been shown to

be important to analyses of social insurance policies, the distribution of wealth, and

marginal propensities to consume. Cyclical variation in income risk has been shown to

be important to the welfare cost of business cycles and the value of stabilization policy.

The incidence of the business cycle is relevant for cyclical variation in inequality.

In a particular application, one may �nd it useful to include only some elements of

the income process or to modify the model in other ways. The set of moments we target

and the estimation procedure we use can easily be applied to estimate alternative income

processes.
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A Details of the Objective Function

The objective function is the sum of several components (as listed in the lower panel

of Table III), and we discuss each component in turn. Starting with the �quantiles�

component, let P90,5 be the average across years of the 90th percentile of the distribution

of �ve-year income growth. Let PMod
90,5 be the model-implied value. We then form

∑
d∈{1,3,5}

(PMod
10,d − P10,d

P10,d

)2

+

(
PMod
50,d − P50,d

P90,d

)2

+

(
PMod
90,d − P90,d

P90,d

)2
 .

Notice that we use the 90th percentile in the denominator of the di�erence between the

medians to avoid dividing by a value near zero. Turning to the �kurtosis� component,
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we add ∑
d∈{1,5}

(
KMod
d −Kd

Kd

)2

,

where Kd is the kurtosis of the distribution of d-year changes in income averaged across

years. Turning to the cross sectional variance pro�le, we add

10×
∑

a∈{25,35,45,55}

(
V Mod
a − Va
Va

)2

,

where Va is the cross-sectional variance of income among individuals of age a. Turning to

the histogram component, we use a histogram to approximate the distribution of income

growth between 1995 and 1996. The histogram has 279 equally spaced bins on a domain

of log income changes that runs from -4.0 to 4.0. The tail mass moments are the CDF

at -1.2 and one minus the CDF at 1.2. The left-tail slope is calculated by regressing the

log density on the domain [−4.0,−1.2] on the midpoints of the bins in that domain. The

right-tail slope is formed analogously on [1.2, 4.0]. We then add(
MMod

Left −MLeft

MLeft

)2

+ 5×

(
SMod
Left − SLeft

SLeft

)2

,

whereMLeft is the mass in the left tail and SLeft is the slope of the left tail. We then add

the same components for the right tail. Turning to the skewness time series component,

we add ∑
d∈{1,3,5}

1

T

T∑
t=1

(
NMod
d,t −Nd,t

0.2

)2

,

where Nd,t is Kelley skewness of the distribution of d-year changes in income in year

t. Skewness can take values near zero, so we divide by 0.2 instead, which is about

two standard deviations of the �uctuations in skewness. Finally, we have the factor

structure. We have seven business cycle episodes in all, but for exposition let us focus

on an episode that starts in year t and ends in year τ . For this calculation, we winsorize

the simulated data at the 10th and 90th percentiles of income growth between t and τ to

reduce simulation noise. We then compute average income for each individual for years

t − 5 to t − 1, and we bin the individuals by their percentile in the distribution of past

income. With the groups held �xed, we then compute the average income for each group

in t and in τ ; e.g., ȳp,t ≡ E[exp(yi,t)|i ∈ p], where p is a group or percentile. We then

33



take the log change in the averages sp = log ȳp,τ − log ȳp,t. For values of p ∈ [11, 80], we

regress sp on p. Let L[11,80],[t,τ ] be the slope coe�cient of this regression. We then regress

sp on p on the domain [81, 100] to form L[81,100],[t,τ ]. We add to the objective function

1

100

(
LMod
[11,80],[t,τ ] − L[11,80],[t,τ ]

L[11,80],[t,τ ]

)2

+
1

100

(
LMod
[81,100],[t,τ ] − L[81,100],[t,τ ]

L[81,100],[t,τ ]

)2

.

We repeat these steps for the business cycle episodes: [1979, 1983], [1983, 1990], [1990, 1992],

[1992, 2000], [2000, 2002], [2002, 2007], [2007, 2010].

The data moments are taken from the data appendixes provided by Guvenen et al.

(2014) (GOS) and Guvenen et al. (2015) (GKOS). The percentiles are taken from Table

C1 in the Excel data �le that accompanies GOS. The age pro�le of the cross-sectional

variance of log income is taken from Figure A.2 in the data appendix of GKOS. The

factor structure of business cycle incidence is taken from Figures 13 and 14 in the data

appendix for GOS. Kurtosis is taken from Figure 10 in GKOS, and the log density of

one-year income growth comes from Figure 11. The standard deviations of one-year and

�ve-year changes in income are taken from GOS Appendix Table A8.

B Results from Additional Speci�cations
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Table B.I � Estimated Parameters

Parameters (2') (3') (4')

σγ St. dev. of �xed e�ects 0.628 0.608 0.590

pζ Probability of full-year empl. 0.585 0.607 0.620

λ Transitory exponential parameter 3.355 3.102 3.024

ψ Scarring e�ect of transitory shock � 0.143 0.138

pη2 Mix. probab. for persist. innov 2 � 0.134 0.112

pη3 Mix. probab. for persist. innov 3 � 0.074 0.082

ση1 Std. dev. for persistent innov. 1 0.114 0.056 0.021

ση2 Std. dev. for persistent innov. 2 � 0.129 0.214

ση3 Std. dev. for persistent innov. 3 � 0.184 0.225

µη1 Center for persistent component 1 � �0.006 -0.019

µη2 Center for persistent component 2 � 0.045 0.003

µη3 Center for persistent component 3 � 0.236 0.136

α1 Factor struct. slope, low income � � �0.720

α2 Factor struct. slope, high income � � 1.045

q Factor structure threshold � � 0.876
Notes: This table shows the estimted parameters for three modi�ed speci�cations. Speci�cation 2' is identical to speci�-
cation 2 but eliminates the scarring e�ect of the transitory income shock (ψ ≡ 0). Speci�cations 3' and 4' are identical
to speci�cations 3 and 4 with the modi�cation that the normal mixture distribution for the persistent innovations is not
time varying (β ≡ 0). For more information on the original speci�cations, see Table I.
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Table B.II � Targeted and Fitted Moments

US Data Model Speci�cations

Moments (2) (2') (3) (3') (4) (4')

P10, one-year change �0.434 �0.448 -0.438 �0.435 -0.429 �0.426 -0.433

P10, three-year change �0.585 �0.486 -0.482 �0.495 -0.478 �0.485 -0.485

P10, �ve-year change �0.631 �0.517 -0.519 �0.529 -0.516 �0.52 -0.521

P50, one-year change 0.020 0.015 0.002 0.009 0.014 0.014 0.012

P50, three-year change 0.061 0.020 0.007 0.012 0.015 0.016 0.014

P50, �ve-year change 0.103 0.035 0.023 0.021 0.028 0.025 0.027

P90, one-year change 0.474 0.435 0.441 0.434 0.433 0.432 0.435

P90, three-year change 0.705 0.487 0.497 0.513 0.509 0.518 0.513

P90, �ve-year change 0.848 0.552 0.566 0.591 0.584 0.599 0.589

Kurtosis, one-year change 20.00 22.730 23.770 23.280 23.487 23.880 23.76

Kurtosis, �ve-year change 12.00 17.78 18.298 16.83 17.215 16.97 17.515

Cross-sectional var., age 25 0.595 0.592 0.562 0.535 0.547 0.556 0.542

Cross-sectional var., age 35 0.719 0.711 0.693 0.692 0.694 0.717 0.695

Cross-sectional var., age 45 0.814 0.832 0.821 0.841 0.845 0.853 0.839

Cross-sectional var., age 55 0.905 0.953 0.95 0.974 0.994 0.991 0.988

Left-tail mass 0.024 0.024 0.023 0.024 0.024 0.024 0.025

Left-tail slope 1.260 1.282 1.297 1.282 1.268 1.294 1.271

Right-tail mass 0.015 0.021 0.022 0.018 0.019 0.018 0.02

Right-tail slope �2.035 �1.482 -1.385 �1.561 -1.516 �1.551 -1.493

Objective value 2.439 2.633 1.592 2.275 1.195 1.943

Quantiles 0.295 0.281 0.238 0.261 0.236 0.247

Kurtosis 0.251 0.311 0.189 0.219 0.210 0.246

Cross-sectional var. pro�le 0.035 0.070 0.187 0.190 0.157 0.185

Histogram 0.525 0.788 0.341 0.403 0.347 0.467

Skewness time series 0.833 0.688 0.143 0.704 0.143 0.657

Factor Structure 0.498 0.494 0.496 0.496 0.101 0.141

Notes: This table shows the model �t for the three modi�ed speci�cations�2', 3', and 4'�and the original speci�cations
from Table III to which they are closely related�2, 3, and 4. The top panel displays all the individual targeted moments
with the exception of the time series for the Kelley skewness of one-year and �ve-year income growth and the factor
structure moments. The �rst column contains the targeted moments computed from SSA data (Guvenen et al. (2014,
2021)) and subsequent columns show the implied values from the estimated models. The bottom panel shows the weighted
contribution of selected sets of moments to the objective function. The top row of the bottom panel shows the total value
of the objective function, including factor structure moments.
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