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C Additional Proofs for Section 3

Proof of Corollary 2. For P0
i > 0, the first order condition on (14) with respect to P0

i , is

λ

∫
v

evi/λ − evN/λ∑N
j=1P0

j e
vj/λ

G(dv) = 0, (S1)

where P0
N denotes 1−

∑N−1
i=1 P0

i .

For i ∈ {1, · · · , N − 1}, we can write

∫
v

evi/λ∑N
i=j P0

j e
vj/λ

G(dv) =

∫
v

evN/λ∑N
j=1P0

j e
vj/λ

G(dv) ≡ µ.
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Notice that µ = 1 because

N∑
i=1

P0
i µ =

N∑
i=1

P0
i

∫
v

evi/λ∑N
j=1P0

j e
vj/λ

G(dv)

=

∫
v

∑N
i=1P0

i e
vi/λ∑N

j=1P0
j e

vj/λ
G(dv)

=

∫
v

G(dv) = 1

so µ
∑N

i=1P0
i = 1, but as {P0

i }
N
i=1 are probabilities we know

∑N
i=1P0

i = 1. Therefore, µ = 1.

Equation (S1) then becomes (17).

Lemma S1. The optimization problem in Corollary 1 always has a solution.

Proof. Since (13) is a necessary condition for the maximum, then the collection {P0
i }Ni=1

determines the whole solution. However, the objective is a continuous function of {P0
i }Ni=1,

since {Pi(v)}Ni=1 is also a continuous function of {P0
i }Ni=1. Moreover, the admissible set for

{P0
i }Ni=1 is compact. Therefore, the maximum always exists.

Given a solution to Corollary 1 we can always construct a solution to Definition 1 as

discussed in Footnote 12.

Uniqueness Concerning uniqueness, there can be special cases where the decision maker is

indifferent between processing more information in order to generate a higher E[vi] and pro-

cessing less information and conserving on information costs. However, a rigid co-movement

of payoffs is required for these cases to arise. Without this structure, if the decision maker

were indifferent between two different strategies then their convex combination would be

preferred as the entropy cost is convex in strategies, {Pi(v)}Ni=1, while E[vi] is linear.

Under the conditions stated below, there is a unique solution to Corollary 1 and therefore

a unique P that is induced by the solution to Definition 1. However, there are many signaling

strategies that lead to the same state-contingent choice probabilities.
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Lemma S2. Uniqueness: If the random vectors evj/λ are linearly independent with unit

scaling, i.e. if there does not exist a set {aj}N−1
j=2 such that

∑N
j=2 aj = 1 and

evi/λ =
N∑
j=2

aje
vj/λ almost surely, (S2)

then the agent’s problem has a unique solution. Conversely, if the agent’s problem has a

unique solution, then the random vectors evj/λ for all j s.t. P0
j > 0 are linearly independent

with unit scaling.

Proof. Let us first study an interior optimum of (14), where the boundary constraint (15)

is not binding. The first order conditions take the form of (17) for i < N and denote

P0
N = 1−

∑N−1
k=1 P0

k to satisfy the constraint (16). The (N − 1) dimensional Hessian is

Hij = −
∫
v

( evi/λ − evN/λ∑N
k=1P0

ke
vk/λ

)( evj/λ − evN/λ∑N
k=1P0

ke
vk/λ

)
G(dv) ∀i, j < N. (S3)

The hessian H is thus (−1) times a Gramian matrix, which is a matrix generated from

inner products of random vectors evi/λ−evN/λ∑N
k=1 P0

ke
vk/λ

. H is thus negative semi-definite at all interior

points {P0
i }Ni=1, not just at the optimum only. This implies that an interior optimum of

the objective (14) is a unique maximum if and only if the Hessian is negative definite at

the optimum. From (S3) we see that for N = 2 the Hessian is not negative-definite, i.e.

the objective is not a strictly concave function of P0
1 , only when ev1 = ev2 almost surely,

i.e. when the actions are identical. Moreover for N > 2, we can use the fact that Gramian

matrices have a zero eigenvalue if and only if the generating vectors are linearly dependent,

which means that there exist i and a set {aj}N−1
j=1,6=i such that

evi/λ − evN/λ∑N
k=1P0

ke
vk/λ

=
N−1∑
j=1,6=i

aj
evj/λ − evN/λ∑N
k=1P0

ke
vk/λ

almost surely. (S4)

Since the equality needs to hold almost surely, we can get rid of the denominators, which

are the same on both sides. By denoting aN = 1 −
∑N−1

j=1,6=i aj, this implies the following
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sufficient and necessary condition for non-uniqueness in the interior for N ≥ 1: there exists

a set {aj}Nj=1, 6=i such that
∑N

j=2 aj = 1, and

evi/λ =
N∑

j=1, 6=i

aje
vj/λ almost surely. (S5)

Now, we extend the proof to non-interior solutions. In the optimization problem formulated

in Corollary 1, the objective is a weakly concave function of {Pi(v)}i on a convex set.

Therefore, any convex linear combination of two solutions must be a solution, too. This

implies that there always exists a solution with P0
i > 0 for all i ∈ S, where S is a set of

indices i for which there exists a solution with P0
i > 0. For example, if there exist two

distinct solutions such that P0
1 > 0 for one and P0

2 > 0 for the other, then there exists a

solution with both P0
1 and P0

2 positive. Therefore, there always exists an interior solution

on the subset S of actions that are ever selected in some solution. Moreover, we can create

many such solutions by taking different convex combinations. However, if the conditions

of the proposition are satisfied, then there can only be one interior solution and hence the

multiple boundary solutions leads to a contradiction. For the actions that are not selected

in any solution, the solution is unique with P0
i = 0.

Corollary S1. If any one of the following conditions is satisfied, then the solution is unique.

(1) N = 2 and the payoffs of the two actions are not equal almost surely.

(2) The prior is symmetric and payoffs of the actions are not equal almost surely.

D Proofs for Section 4

Proof of Lemma 3. Let there exist an x such that Pi(x) > 0 w.l.o.g i = 1. We prove the

statement by showing that action 1 is selected with positive probability for all vectors y.

Let us first generate a vector x11 by copying x1 to action 2: x11 = (x1, x1, x3, . . . , xN).

We find that P1(x11) > 0, which is due to Axiom 1 when it is applied to x and x11 with

i = 3 and j = 1: the axiom implies that P3(x)
P1(x)

= P3(x11)
P1(x11)

. Now, Axiom 2 implies that as
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long as there is the same consequence for actions 1 and 2, then the probability of action 1 is

positive independently of what the consequence is and what the consequences of the other

actions are.

Finally, we show that P1(y) > 0, where y is an arbitrary vector of consequences. This

is due to the fact that P1(y11) > 0, which we just showed in the paragraph above, where

y11 = (y1, y1, y3, . . . , yN), and due to Axiom 1 when it is applied to y11, y, i = 3 and j = 1.

The Axiom implies that if P1(y11) > 0, then P1(y) > 0 too, since y and y11 only differ in

the consequences action 2.

To establish that if Pi(x) = 0 then Pi(y) = 0 for all y is straightforward: suppose

Pi(y) > 0, then the argument above implies Pi(x) > 0.

Proof of Proposition 2. We refer to actions that are not positive actions, i.e. are never

selected, as “zero actions.” Assume w.l.o.g. that actions 1, 2, and N are positive. Fix a

vector of consequences x and define

v(a) ≡ log

(
P1(a, x2, x3, · · · , xN)

PN(a, x2, x3, · · · , xN)

)
. (S6)

So the payoff of consequence a is defined in terms of the probability that it is selected when

it is inserted into the first position of a particular vector of consequences. Also define

ξk ≡
Pk(xk)

P1(xk)
,

where xk is defined as (xk, x2, x3, · · · , xN), which is x with the first element replaced by a

second instance of the consequence in the kth position. Notice that if k is a zero action, then

ξk = 0. By Axiom 2, we have

ξk =
Pk(yk)

P1(yk)
,

where yk is generated from an arbitrary vector of consequences y in the same manner that

xk was generated from x.

Consider a vector of consequences y that shares the N th entry with the generating vector
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x, such that yN = xN . We will show

Pi(y) =
ξie

v(yi)∑N
j=1 ξje

v(yj)
, (S7)

for all i. If i is a zero action, then (S7) holds trivially so we will suppose that i is a positive

action. As the choice probabilities must sum to one, we proceed as follows

1 =
∑
j

Pj(y) = Pi(y)
∑
j

Pj(y)

Pi(y)
= Pi(y)

∑
j

Pj(y)/PN(y)

Pi(y)/PN(y)

Pi(y) =
Pi(y)/PN(y)∑
j Pj(y)/PN(y)

. (S8)

Now, by Axiom 1:

Pk(y)

PN(y)
=
Pk(yk)

PN(yk)

so (S8) becomes

Pi(y) =
Pi(yi)/PN(yi)∑
j Pj(yj)/PN(yj)

=
ξiP1(yi)/PN(yi)∑
j ξjP1(yj)/PN(yj)

. (S9)

For any k, as yN = xN in the case we are considering, by Axiom 1 and definition of v(·) in

(S6):

P1(yk)

PN(yk)
=
P1(yk, x2, x3, · · · , xN)

PN(yk, x2, x3, · · · , xN)

= ev(yk).

Therefore (S9) becomes (S7).

We will now consider an arbitrary y allowing for yN 6= xN as well. We will show that

(S7) still holds by using the axioms and some intermediate vectors to connect y to x. Let
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ywizj be the vector generated from y by replacing the first element of y with wi and the last

element of y with zj for given vectors w and z. For example:

yy1xN = (y1, y2, y3, · · · , yN−1, xN)

yx1xN = (x1, y2, y3, · · · , yN−1, xN)

yxNxN = (xN , y2, y3, · · · , yN−1, xN)

yyNyN = (yN , y2, y3, · · · , yN−1, yN).

Consider yyNyN. For any i < N , by Axiom 1:

Pi(yyNyN) = P1(yyNyN)
Pi(yyNxN)

P1(yyNxN)

= P1(yyNyN)
ξie

v(yi)

ξ1ev(yN )
, (S10)

where the second equality follows from the fact that (S7) holds for y = yyNxN as its N th

entry is xN and we have already established that (S7) holds for vectors y for which yn = xN .

For i = N we have, by Axiom 2:

PN(yyNyN) = P1(yyNyN)
PN(yxNxN)

P1(yxNxN)

= P1(yyNyN)
ξNe

v(xN )

ξ1ev(xN )
= P1(yyNyN)

ξN
ξ1

. (S11)

Combining (S10) and (S11),

Pi(yyNyN)

PN(yyNyN)
=

ξie
v(yi)

ξNev(yN )
(S12)

for all i. As the probabilities sum to one, we arrive at

PN(yyNyN) =
ξNe

v(yN )∑
j ξje

v(yj)
(S13)

and (S7) for y = yyNyN follows from (S12) and (S13).
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Finally, we turn our attention to the arbitrary y. For any j < N , we use Axiom 1 to

write

Pj(y)

P2(y)
=
Pj(yy1xN)

P2(yy1xN)
=
ξje

v(yj)

ξ2ev(y2)
, (S14)

where the second equality follows from the fact that (S7) has already been established for

y = yy1xN. For j = N , by Axiom 1 we can write

PN(y)

P2(y)
=
PN(yyNyN)

P2(yyNyN)
=
ξNe

v(yN )

ξ2ev(y2)
, (S15)

where the second equality follows from the fact that (S7) has already been established for

y = yyNyN. Using
∑

j Pj(y) = 1 we arrive at

P2(y) =
ξ2e

v(y2)∑
j ξje

v(yj)

and then (S7) follows from (S14) and (S15). To complete the proof, we apply the normal-

ization P0
i = ξi/

∑
j ξj for all i.

E Proofs for Section 5

E.1 Monotonicity

Proof of Proposition 3. The agent’s objective function, (14), can be rewritten to include

the constraint
∑N

i=1P0
i = 1

∫
v

λ log

[
N−1∑
i=1

P0
i e

vi/λ +

(
1−

N−1∑
i=1

P0
i

)
evN/λ

]
G(dv).

Written in this way, the agent is maximizing over {P0
i }

N−1
i=1 subject to (15). Let us first

assume that the constraint (15) is not binding and later on we show the statement holds in

general.

8



The first order condition with respect to P0
1 is

λ

∫
v

ev1/λ − evN/λ∑N
j=1P0

j e
vj/λ

G(dv) = 0, (S16)

where P0
N denotes 1−

∑N−1
i=1 P0

i .

Ĝ(·) is generated from G(·) by increasing the payoffs of action 1 and this change can

be implemented using a function f(v) ≥ 0, where
∫
f(v)G(dv) > 0, which describes the

increase in v1 in various states. Let v be transformed such that ev̂1/λ = ev1/λ (1 + f(v)) and

with v̂j = vj for all v and j = 2, · · · , N . Under the new prior, Ĝ(·), the left-hand side of

(S16) becomes

∆1 ≡ λ

∫
v

ev1/λ (1 + f(v))− evN/λ∑N
j=1P0

j e
vj/λ + P0

1e
v1/λf(v)

G(dv). (S17)

Notice that [∆1, · · · ,∆N−1] is the gradient of the agent’s objective function under the new

prior evaluated at the optimal strategy under the original prior. We now consider a marginal

improvement in the direction of f(v). In particular, consider an improvement of εf(v) for

some ε > 0. Equation (S17) becomes

∆1 = λ

∫
v

ev1/λ (1 + εf(v))− evN/λ∑N
j=1P0

j e
vj/λ + P0

1e
v1/λεf(v)

G(dv). (S18)

Differentiating with respect to ε at ε = 0 leads to

∂∆1

∂ε

∣∣∣∣
ε=0

= λ

∫
v

ev1/λf(v)
∑N

j=1P0
j e

vj/λ −
(
ev1/λ − evN/λ

)
P0

1e
v1/λf(v)(∑N

j=1P0
j e

vj/λ
)2 G(dv) (S19)

= λ

∫
v

ev1/λf(v)

∑N
j=2P0

j e
vj/λ + evN/λP0

1(∑N
j=1P0

j e
vj/λ
)2 G(dv) > 0. (S20)

This establishes that at the original optimum, {P0
i }

N−1
i=1 , the impact of a marginal im-

provement in action 1 is to increase the gradient of the new objective function with respect
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to the probability of the first action. Therefore the agent will increase P0
1 in response to the

marginal improvement. Notice that this holds for a marginal change derived from any total

f(v). Therefore, if the addition of the total f(v) were to decrease P0
1 , then by regularity

there would have to be a marginal change of the prior along νf(v), where ν[0, 1], such that

P0
1 decreases due to this marginal change too. However, we showed that the marginal change

never decreases P0
1 .

We conclude the proof by addressing the cases when the (15) can be binding. We already

know that monotonicity holds everywhere in the interior, therefore the only remaining case

that could violate the monotonicity is if P0
1 = 1, while P̂0

1 = 0. In other words, if after an

increase of payoff in some states the action switches from being selected with probability one

to never being selected. However, this is not possible since the expected payoff of action 1

increases. If P0
1 = 1, the agent processes no information and thus the expected utility equals

the expectation of v1. After the transformation of the payoffs of action 1, under Ĝ, each

strategy that ignores action 1 delivers the same utility as before the transformation, but

the expected utility from selecting the action 1 with probability one is higher than before.

Therefore, P̂0
1 = 1. Strict monotonicity holds in the interior and weak monotonicity on the

boundaries. .

E.2 Duplicates

Proof of Proposition 4. Let us consider a problem with N + 1 actions, where the actions

N and N + 1 are duplicates. Let {P̂0
i (u)}N+1

i=1 be the unconditional probabilities in the

solution to this problem. Since uN and uN+1 are almost surely equal, then we can substitute

uN for uN+1 in the first order condition (13) to arrive at:

P̂i(u) =
P̂0
i e

ui/λ∑N−1
j=1 P̂0

j e
uj/λ + (P̂0

N + P̂0
N+1)euN/λ

almost surely,∀i < N (S21)

P̂N(u) + P̂0
N+1(u) =

(P̂0
N + P̂0

N+1)eui/λ∑N−1
j=1 P̂0

j e
uj/λ + (P̂0

N + P̂0
N+1)euN/λ

almost surely (S22)
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Therefore, the right hand sides do not change when only P̂0
N and P̂0

N+1 change if their sum

stays constant. Inspecting (S21)-(S22), we see that any such strategy produces the same

expected value as the original one. Moreover, the amount of processed information is also

the same for both strategies. To show this we use (13) to rewrite (9) as:1

κ =

∫ N+1∑
i=1

P̂i(u) log
P̂i(u)

P̂0
i

G(du) =

∫ N+1∑
i=1

P̂i(u) log
eui/λ∑N−1

j=1 P̂0
j e

uj/λ + (P̂0
N + P̂0

N+1)euN/λ
G(du).

(S23)

Therefore, the achieved objective in (10) is the same for any such strategy as for the original

strategy, and all of them solve the decision maker’s problem.

Finally, even the corresponding strategy with P̂0
N+1 = 0 is a solution. Moreover, this

implies that the remaining {P̂0
i }Ni=1 is the solution to the problem without the duplicate

action N + 1, which completes the proof.

E.3 Similar actions

Proof of Proposition 5. We proceed similarly as in the proof of Proposition 3 by showing

that ∆2 ≡ ∂E[U ]

∂P0
1

+ ∂E[U ]

∂P0
2

decreases at all points {P 0
i }Ni=1 after a marginal change of prior in

the direction of interest. Notice that ∆2 is a scalar product of the gradient of E[U ] and the

vector (1, 1, 0, . . . , 0). We thus show that at each point, the gradient passes through each

plane of constant P0
1 + P0

2 more in the direction of the negative change of P0
1 + P0

2 than

before the change of the prior.

The analog to equation (S17), after relocating εΠ probability from state 1 to 3 and from

state 2 to 4, the sum of the left hand sides of the first order conditions for i = 1 and i = 2,

1Here we use the fact that the mutual information between random variables X and Y can be expressed

as Ep(x,y)

[
log p(x,y)

p(x)p(y)

]
. See Cover and Thomas (2006, p. 20).
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becomes:

∆2 =λ

∫
v

ev1/λ + ev2/λ − evN/λ∑N
j=1P0

j e
vj/λ

G(dv)

+ λΠ
((1− ε)(eH/λ + eL/λ − evN/λ)

P0
1e

H/λ + P0
2e

L/λ + a
+

(1− ε)(eH/λ + eL/λ − evN/λ)
P0

1e
L/λ + P0

2e
H/λ + a

+
ε(2eH/λ − evN/λ)

P0
1e

H/λ + P0
2e

H/λ + a
+

ε(2eL/λ − evN/λ)
P0

1e
L/λ + P0

2e
L/λ + a

)
, (S24)

where a =
∑N

j=3P0
j e

vj/λ is constant across the states 1-4, since for j > 2, vj is constant

there.

The analog to equation (S19) when we differentiate ∆2 = ∂E[U ]

∂P0
1

+ ∂E[U ]

∂P0
2

with respect to ε

is:

∂∆2

∂ε

∣∣∣∣
ε=0

=λ
(
− eH/λ + eL/λ − evN/λ

P0
1e

H/λ + P0
2e

L/λ + a
− eH/λ + eL/λ − evN/λ

P0
1e

L/λ + P0
2e

H/λ + a

+
2eH/λ − evN/λ

P0
1e

H/λ + P0
2e

H/λ + a
+

2eL/λ − evN/λ

P0
1e

L/λ + P0
2e

L/λ + a

)
. (S25)

Multiplying the right hand side by the positive denominators, the resulting expression

can be re-arranged to

−λ(eH/λ − eL/λ)2[
a2(P0

1 + P0
2 ) + eH/λeL/λ(P0

1 − P0
2 )2(P0

1 + P0
2 ) + a(eH/λ + eL/λ)((P0

1 )2 + (P0
2 )2)

+ evN/λP0
1P0

2 (2a+ eH/λP0
1 + eL/λP0

1 + eH/λP0
2 + eL/λP0

2 )
]

which is negative, and thus ∂∆2

∂ε

∣∣
ε=0

is negative, too. After the marginal relocation of proba-

bilities that makes the payoffs of actions 1 and 2 co-move more closely, the optimal P0
1 +P0

2

decreases. The treatment of the boundary cases is analogous to that in the proof of Propo-

sition 3.
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F Derivations for examples

F.1 Auxillary example

This is perhaps the simplest example of how rational inattention can be applied to a discrete

choice situation. We present it here principally because this analysis forms the basis of our

proof of Proposition 6 in Appendix F.3, but also because it provides some additional insight

into the workings of the model.

Suppose there are two actions, one of which has a known payoff while the payoff of the

other takes one of two values. One interpretation is that the known payoff is an outside

option or reservation value.

Problem S1. There are two states and two actions with payoffs:

state 1 state 2

action 1 0 1

action 2 R R

prior prob. g0 1− g0

with R ∈ (0, 1).

To solve the problem, we must find {P0
i }2

i=1. We show below that the solution is:

P0
1 = max

0,min

1,−
e
R
λ

(
−e 1

λ + e
R
λ − g0 + g0e

1
λ

)
(
e

1
λ − eRλ

)(
−1 + e

R
λ

)
 (S26)

P0
2 = 1− P0

1 .

For a given set of parameters, the unconditional probability P0
1 as a function of R is shown

in Figure S1. For R close to 0 or to 1, the decision maker decides not to process information

and selects one of the actions with certainty. In the middle range however, the decision

maker does process information and the selection of action 1 is less and less probable as the

reservation value, R, increases, since action 2 is more and more appealing. For g0 = 1/2 and
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Figure S1: P0
1 as a function of R and λ = 0.1, g0 = 0.5.

0.2 0.4 0.6 0.8 1.0
R

0.2

0.4

0.6

0.8

1.0

probability

Figure S2: P1(1, R) as a function of R and λ = 0.1, g0 = 0.5.

R = 1/2, solutions take the form of the multinomial logit, i.e. P0
1 = P0

2 = 1/2. If the decision

maker observed the values, he would choose action 1 with the probability (1 − g0) = 1/2

for any reservation value R. However, the rationally inattentive agent chooses action 1 with

higher probability when R is low.

Figure S2 again shows the dependance on R, but this time it presents the probability

of selecting the first action conditional on the realized value v1 = 1, it is P1(1, R). Since

R < 1, it would be optimal to always select the action 1 when its value is 1. The decision

maker obviously does not choose to do that because he is not sure what the realized value

is. When R is high, the decision maker processes less information and selects a low P0
1 . As

a result, P1(1, R) is low.
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Figure S3: P0
1 as a function of λ evaluated at various values of g0 and R = 0.5.

In general, one would expect that as R increases, the decision maker would be more

willing to reject action 1 and receive the certain value R. Indeed, differentiating the non-

constant part of (S26) one finds that the function is non-increasing in R. Similarly, the

unconditional probability of selecting action 1 falls as g0 rises, as it is more likely to have a

low payoff. Moreover, we see from equation (S26) that, for R ∈ (0, 1), P0
1 equals 1 for g0 in

some neighborhood of 0 and it equals 0 for g0 close to 1.2 For these parameters, the decision

maker chooses not to process information.

The following Proposition summarizes the immediate implications of equation (S26).

Moreover, the findings hold for any values of the uncertain payoff {a, b} such that R ∈ (a, b).

Proposition S1. Solutions to Problem S1 have the following properties:

1. The unconditional probability of action 1, P0
1 , is a non-increasing function of g0 and

the payoff of the other action, R.

2. For all R ∈ (0, 1) and λ > 0, there exist gm and gM in (0, 1) such that if g0 ≤ gm, the

decision maker does not process any information and selects action 1 with probability

one. Similarly, if g0 ≥ gM , the decision maker processes no information and selects

action 2 with probability one.

2The non-constant argument on the right-hand side of (S26) is continuous and decreasing in g0, and it is
greater than 1 at g0 = 0 and negative at g0 = 1.
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Figure S3 plots P0
1 as a function of the information cost λ for three values of the prior,

g0. When λ = 0, P0
1 is just equal to 1 − g0 because the decision maker will have perfect

knowledge of the value of action 1 and choose it when it has a high value, which occurs with

probability 1− g0. As λ increases, P0
1 fans out away from 1− g0 because the decision maker

no longer possesses perfect knowledge about the payoff of action 1 and eventually just selects

the action with the higher expected payoff according to the prior.

Solving for the choice probabilities in Problem S1. To solve the problem, we must find P0
1 ,

while P0
2 = 1 − P0

1 . These probabilities must satisfy the normalization condition, equation

(17):

1 =
g0

P0
1 + P0

2e
R
λ

+
(1− g0)e

1
λ

P0
1e

1
λ + P0

2e
R
λ

if P0
1 > 0, (S27)

1 =
g0e

R
λ

P0
1 + P0

2e
R
λ

+
(1− g0)e

R
λ

P0
1e

1
λ + P0

2e
R
λ

if P0
2 > 0. (S28)

There are three solutions to this system,

P0
1 ∈

0, 1,−
e
R
λ

(
−e 1

λ + e
R
λ − g0 + g0e

1
λ

)
(
e

1
λ − eRλ

)(
−1 + e

R
λ

)
 (S29)

P0
2 = 1− P0

1 .

Now, we make an argument using the solution’s uniqueness to deduce the true solution to

the decision maker’s problem. The first solution to the system, P0
1 = 0, corresponds to the

case when the decision maker chooses action 2 without processing any information. The

realized utility is then R with certainty. The second solution, P0
1 = 1, results in the a priori

selection of action 1 so the expected utility equals (1− g0). The third solution describes the

case when the decision maker chooses to process a positive amount of information.

In Problem S1, there are just two actions and they do not have the same payoffs with

probability one. Therefore, Corollary S1 establishes that the solution to the decision maker’s

optimization problem must be unique.
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Since the expected utility is a continuous function of P0
1 , R, λ and g0, then the optimal

P0
1 must be a continuous function of the parameters. Otherwise, there would be at least

two solutions at the point of discontinuity of P0
1 . We also know that, when no information

is processed, action 1 generates higher expected utility than action 2 for (1 − g0) > R, and

vice versa. So for some configurations of parameters P0
1 = 0 is the solution and for some

configurations of parameters P0
1 = 1 is the solution. Therefore, the solution to the decision

maker’s problem has to include the non-constant branch, the third solution. To summarize

this, the only possible solution to the decision maker’s optimization problem is

P0
1 = max

0,min

1,−
e
R
λ

(
−e 1

λ + e
R
λ − g0 + g0e

1
λ

)
(
e

1
λ − eRλ

)(
−1 + e

R
λ

)
 . (S30)

F.2 Problem 3

To find the solution to Problem 3 we must solve for {P0
r ,P0

b ,P0
t }. The normalization condi-

tion P0
r =

∫
v
Pr(v)G(dv) yields:

1 =
1
4

(1 + ρ)

P0
r + P0

b + (1− P0
r − P0

b )e1/2λ
+

1
4

(1− ρ) e1/λ

P0
r e

1/λ + P0
b + (1− P0

r − P0
b )e1/2λ

+
1
4

(1− ρ)

P0
r + P0

b e
1/λ + (1− P0

r − P0
b )e1/2λ

+
1
4

(1 + ρ) e1/λ

P0
r e

1/λ + P0
b e

1/λ + (1− P0
r − P0

b )e1/2λ
(S31)

Due to the symmetry between the buses, we know P0
r = P0

b . This makes the problem one

equation with one unknown, P0
r . The problem can be solved analytically using the same

arguments as in Appendix F.1. The resulting analytical expression is:
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P0
r = max


0,min


0.5,


e

1
2λ − 8e

1
λ + 14e

3
2λ − 8e2/λ + e

5
2λ

+1
2
e

1
2λ (1− ρ)− e 3

2λ (1− ρ) + 1
2
e

5
2λ (1− ρ)

+e
1
2λ

(
−1 + e

1
λ

)
x


2
(

4e
1
2λ − 16e

1
λ + 24e

3
2λ − 16e2/λ + 4e

5
2λ

)




,

where

x =

√√√√√√√√
2− 2e

1
λ + e2/λ − 8e

1
2λ (1− ρ) + 14e

1
λ (1− ρ)

−8e
3
2λ (1− ρ) + e2/λ(1− ρ) + 1

4
(1− ρ)2

−1
2
e

1
λ (1− ρ)2 + 1

4
e2/λ(1− ρ)2 − ρ

.

F.3 Inconsistency with a random utility model

This appendix establishes that the behavior of the rationally inattentive agent is not consis-

tent with a random utility model. The argument is based on the counterexample described

in Section 5.3.2. Let Problem A refer to the choice among actions 1 and 2 and Problem B

refer to the choice among all three actions. For simplicity, Pi(s) denotes the probability of

selecting action i conditional on the state s, and g(s) is the prior probability of state s.

Lemma S3. For all ε > 0 there exists Y s.t. the decision maker’s strategy in Problem B

satisfies

P3(1) > 1− ε, P3(2) < ε.

Proof: For Y > 1, an increase of P3(1) (decrease of P3(2)) and the corresponding reloca-

tion of the choice probabilities from (to) other actions increases the agent’s expected payoff.

The resulting marginal increase of the expected payoff is larger than (Y − 1) min(g(1), g(2)).

Selecting Y allows us to make the marginal increase arbitrarily large and therefore the

marginal value of information arbitrarily large.
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On the other hand, with λ being finite, the marginal change in the cost of information

is also finite as long as the varied conditional probabilities are bounded away from zero.

See equation (9), the derivative of entropy with respect to Pi(s) is finite at all Pi(s) > 0.

Therefore, for any ε there exists high enough Y such that it is optimal to relocate probabilities

from actions 1 and 2 unless P3(1) > 1− ε, and to actions 1 and 2 unless P3(2) < ε.

Proof of proposition 6. We will show that there exist g(1) ∈ (0, 1) and Y > 0 such that

action 1 has zero probability of being selected in Problem A, while the probability is positive

in both states in Problem B. Let us start with Problem A. According to Proposition S1, there

exists a sufficiently high g(1) ∈ (0, 1), call it gM , such that the decision maker processes no

information and P1(1) = P1(2) = 0. We will show that for g(1) = gM there exists a high

enough Y , such the choice probabilities of action 1 are positive in Problem B.

Let P = {Pi(s)}3,2
i=1,s=1 be the solution to Problem B. We now show that the optimal

choice probabilities of actions 1 and 2, {Pi(s)}2,2
i=1,s=1, solve a version of Problem A with

modified prior probabilities. The objective function for Problem B is

max
{Pi(s)}3,2i=1,s=1

3∑
i=1

2∑
s=1

vi(s)Pi(s)g(s)

− λ

[
−

2∑
s=1

g(s) log g(s) +
3∑
i=1

2∑
s=1

Pi(s)g(s) log
Pi(s)g(s)∑
s′ Pi(s′)g(s′)

]
, (S32)

where we have written the information cost as H(s)−E[H(s|i)].3 If P3(1) and P3(2) are the

conditional probabilities of the solution to Problem B, the remaining conditional probabilities

solve the following maximization problem.

max
{Pi(s)}2,2i=1,s=1

2∑
i=1

2∑
s=1

vi(s)Pi(s)g(s)− λ

[
2∑
i=1

2∑
s=1

Pi(s)g(s) log
Pi(s)g(s)∑
s′ Pi(s′)g(s′)

]
, (S33)

subject to P1(s) + P2(s) = 1 − P3(s), ∀s. Equation (S33) is generated from (S32) by

omitting the terms independent of {Pi(s)}2,2
i=1,s=1. Now, we make the following substitution

3Recall that H(Y |X) = −
∑
x∈X

∑
y∈Y p(x, y) log p(y|x) (Cover and Thomas, 2006, p. 17).
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of variables.

Ri(s) = Pi(s)/
(

1− P3(s)
)

(S34)

ĝ(s) = Kg(s)
(

1− P3(s)
)

(S35)

1/K =
2∑
s=1

g(s)
(

1− P3(s)
)
. (S36)

where K, which is given by (S36), is the normalization constant that makes the new prior,

ĝ(s), sum up to 1.

The maximization problem (S33) now takes the form:

max
{Ri(s)}1,2i=1,s=1

2∑
i=1

2∑
s=1

vi(s)Ri(s)ĝ(s)− λ
2∑
i=1

2∑
s=1

Ri(s)ĝ(s) log
Ri(s)ĝ(s)∑
s′Ri(s′)ĝ(s′)

, (S37)

subject to

R1(s) +R2(s) = 1 ∀s. (S38)

The objective function of this problem is equivalent to (S33) up to a factor of K, which is a

positive constant. The optimization problem (S37) subject to (S38) is equivalent to Problem

A with the prior modified to from g(s) to ĝ(s), let us call it Problem C.4

According to Proposition S1, there exists ĝm ∈ (0, 1) such that the decision maker always

selects action 1 in Problem C for all ĝ(1) ≤ ĝm. From equations (S35) and (S36) we see that

for any ĝm > 0 and g(1), g(2) ∈ (0, 1) there exists ε > 0 such that if P3(1) > 1 − ε and

P3(2) < ε, then ĝ(1) < ĝm.5 Moreover, Lemma S3 states that for any such ε > 0 there exists

Y such that P3(1) > 1 − ε and P3(2) < ε. Therefore there is a Y such that in Problem C,

action 1 is selected with positive probability in both states, which also implies it is selected

with positive probabilities in Problem B, see equation (S34).

4To see the equivalence to Problem A, observe that this objective function has the same form as (S32)
except for a) the constant corresponding to H(s) and b) we only sum over i = 1, 2.

5ĝ(1) = g(1)(1−P3(1))∑
s g(s)(1−P3(s))

< g(1)(1−P3(1))
g(2)(1−P3(2))

< g(1)ε
g(2)(1−ε) .
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