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THIS SUPPLEMENT CONTAINS ADDITIONAL MATERIAL FOR THE ARTICLE “What Can
Time-Series Regressions Tell Us About Policy Counterfactuals?”. We provide (i) sup-
plementary results complementing our theoretical identification analysis in Section 2, (ii)
implementation details for our empirical methodology in Section 3, and (iii) several sup-
plementary findings and alternative experiments complementing our empirical applica-
tions in Section 4.

Any references to equations, figures, tables, assumptions, propositions, lemmas, or
sections that are not preceded by “A.”—“C.” refer to the main article.

APPENDIX A: SUPPLEMENTARY THEORETICAL RESULTS

This appendix provides several results complementing our theoretical identification
analysis of Section 2. Appendix A.1 discusses examples of macro models that are nested by
our results, Appendix A.2 gives an example of a model that is not, Appendix A.3 extends
our optimal policy arguments to more general loss functions, Appendix A.4 works out
what happens when the policy rule itself is changing, Appendix A.5 provides the details for
unconditional second-moment counterfactuals, Appendix A.6 studies optimal monetary
policy in our illustrative HANK model, Appendix A.7 shows how we construct counter-
factuals with a limited number of policy shocks (as displayed in Figure 1), Appendix A.8
provides a global identification analysis with even higher informational requirements, and
finally, Appendix A.9 extends our results to the case where only the policy rule is non-
linear.

A.1. Examples of Nested Models

We provide further details on three sets of models: the three-equation New Keynesian
model of Section 2.1, a general class of behavioral models, and the HANK model of
Section 2.4.
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Three-Equation NK Model

We here state the three-equation model of Section 2.1 in the form of our general matrix
system (6)–(7). We begin with the non-policy block. The Phillips curve can be written as
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Letting x ≡ (π ′�y′)′, we can stack these linear maps into the form (6). Finally, the policy
rule can be written as

φππ − i+ ν= 0�

which directly fits into the form of (7) with z= i.

Behavioral Model

Our general framework (6)–(7) is rich enough to nest popular behavioral models such
as the cognitive discounting framework of Gabaix (2020) or the sticky information setup
of Mankiw and Reis (2002). We here provide a sketch of the argument for a particu-
lar example—the consumption-savings decision of behavioral consumers. Our discussion
leverages sequence-space arguments as in Auclert, Bardóczy, Rognlie, and Straub (2021).

Let the linear map E summarize the informational structure of the consumption-savings
problem, with entry (t� s) giving the expectations of consumers at time t about shocks at
time s. Here an entry of 1 corresponds to full information and rational expectations, while
entries between 0 and 1 can capture behavioral discounting or incomplete information.
For example, cognitive discounting at rate θ would correspond to
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while sticky information with a fraction 1 − θ receiving the latest information could be
summarized as
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Let p denote an input to the household consumption-savings problem (e.g., income or in-
terest rates). In sequence space, we can use the matrix E to map derivatives of the aggre-
gate consumption function with respect to p, denoted Cp, into their behavioral analogues
C̃p via

C̃p(t� s) =
min(t�s)∑
q=1

[
E (q� s) − E (q− 1� s)

]
Cp(t − q+ 1� s − q+ 1)�

Typical behavioral frictions thus merely affect the matrices that enter our general non-
policy block (6), but do not affect the separation of policy and non-policy blocks at the
heart of our identification result.

Quantitative HANK Model

The HANK model used for our quantitative illustration in Section 2.4 is a simplified
version of that in Wolf (2021). Since the model is standard, our discussion here will be
relatively brief.

• Demand block. The economy is populated by a unit continuum of households that
can save in a nominally risk-free, liquid asset. We set the steady-state quarterly real
return on the asset to r̄ = 0�01, and its supply as a share of quarterly output to 1�04
(Kaplan, Moll, and Violante (2018)). Households have time-separable log prefer-
ences over consumption, with discount factor β. Their total non-asset income is
(1 − τy)eityt + τt . Here yt is aggregate income and eit is idiosyncratic household
productivity, with

∫ 1
0 eit di = 1 at all t and where eit follows the income process of

Kaplan, Moll, and Violante (2018), ported to discrete time. Households also receive
lump-sum transfers τt from the government; we set the steady-state level of transfers
as a share of quarterly output to 0�05. We recover the time-invariant income tax rate
τy to balance the government budget.

The consumption block of the model is solved in two steps. First, we iterate over
the household discount factor β to clear the liquid asset market in steady state. Sec-
ond, we differentiate the aggregate consumption function around the deterministic
steady state, giving the linearized relation

c = Cyy+ Cii+ Cππ + Cττ�

where c is consumption, y is aggregate income, i is the nominal rate on the liquid as-
set, π is inflation, and τ denotes the uniform lump-sum transfer. Without uninsurable
income risk, this demand block would collapse to the familiar Euler equation.

• Supply block. The supply relation of our economy is a standard NKPC:28

πt = κyt + 1
1 + r̄

πt+1 + εt�

where εt is a contractionary cost-push shock and we set κ = 0�1. We assume that εt

follows a standard AR(1) process with persistence 0�8.
• Policy. The fiscal authority fixes the total amount of outstanding government debt

at its steady-state level and adjusts lump-sum transfers to balance the budget. The
monetary authority follows the policy rules described in Section 2.4.

28See McKay and Wolf (2022) for a discussion of the assumptions on primitives necessary to derive such a
supply relation from a combination of nominal rigidities and consumer labor supply in a HANK model.
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A.2. Filtering Problems

To illustrate how an asymmetry in information between the private sector and the pol-
icy authority can break our separation of the policy and non-policy blocks in (6)–(7) even
for a linear model, we consider a standard Lucas (1972) island model with a slightly gen-
eralized policy rule. The policy authority sets nominal demand xt according to the rule

xt =φyyt + xt−1 + εm
t �

where yt denotes real aggregate output and εm
t is a policy shock with volatility σm. The

private sector of the economy as usual yields an aggregate supply curve of the form

yt = θ(pt −Et−1pt)�

where the response coefficient θ follows from a filtering problem and is given as

θ = σ2
z

σ2
z + σ2

p

�

with σz denoting the (exogenous) volatility of idiosyncratic demand shocks and σp de-
noting the (endogenous) volatility of the surprise component of prices, pt − Et−1pt .
A straightforward guess-and-verify solution of the model gives

pt = 1
1 + θ

xt + θ

1 + θ
xt−1

and so

σ2
p =

(
1

1 + θ

)2

Var
(
φyyt + εm

t

)
�

But since

yt = 1

1 − θ

1 + θ
φy

θ

1 + θ
εm
t �

it follows that θ depends on the policy rule coefficient φy , breaking our separation as-
sumption.

A.3. More General Loss Functions

Proposition 2 can be generalized to allow for a non-separable quadratic loss function.
Suppose the policymaker’s loss function takes the form

L= 1
2
x′Qx� (A.1)

where Q is a weighting matrix. Following the same steps as the proof of Proposition 2, we
can formulate the policy problem as minimizing the loss function (A.1) subject to (25).
The first-order conditions of this problem are

�′
ν�x�A

(
Q+Q′)x= 0�
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so we can recover the optimal policy rule as

A∗
x = �′

ν�x�A

(
Q+Q′)�

A∗
z = 0�

Even outside of the quadratic case, the causal effects of policy shocks on x are still
enough to formulate a set of necessary conditions for optimal policy, but in this general
case, the resulting optimal policy rule will not fit into the linear form (7).

A.4. Changing Policy Rules

Our results apply without change to economies in which the policy rule is changing
over time; instead, for our purposes, the key requirement is that the non-policy block
(6) remains stable. To see why, consider an econometrician who observes data generated
from an economy described first by the pair of equations

Hww+Hxx+Hzz+Hεε = 0� (A.2)

Ax�1x+Az�1z+ ν1 = 0� (A.3)

before then changing to

Hww+Hxx+Hzz+Hεε = 0� (A.4)

Ax�2x+Az�2z+ ν2 = 0� (A.5)

That is, while the private-sector block remains stable throughout, the policy rule has
changed over time. In keeping with Assumption 1, we assume that both policy rules in-
duce a unique bounded equilibrium for any bounded sequence of {ε�ν1} or {ε�ν2}.

Now consider an econometrician who separately studies the propagation of policy
shocks on the two subsamples. In particular, suppose she has successfully estimated the
causal effects of some bounded policy shock vector ν1 under the first rule. Then, by the
exact same logic as in the proof of Proposition 1, we know that the similarly bounded
shock sequence

ν2 = (Ax�1 −Ax�2)xA1 (ν1) + (Az�1 −Az�2)zA1 (ν1) + ν1

under the new policy rule will induce the exact same impulse responses—that is, we have

xA1 (ν1) = xA2 (ν2)� zA1 (ν1) = zA2 (ν2)�

The same argument also works in reverse, mapping any bounded ν2 into a similarly
bounded ν1 with the exact same causal effects. This in particular implies that our econo-
metrician could use her evidence on policy shock propagation from either subsample to
implement our identification results in Section 2.3. Intuitively, since the private-sector
block is unchanged, policy shocks in both cases identify the exact same space of dynamic
causal effects, just with respect to two different reference points—the rule {Ax�1�Az�1} in
the first subsample, and the rule {Ax�2�Az�2} in the second subsample.

As the final step in the argument, suppose now that the econometrician would estimate
policy shock causal effects across the two (large) subsamples; in particular, suppose that
the relative sizes of her two subsamples are (ω�1−ω). In that case, direct projection on an
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instrumental variable that correlates with a given shock sequence ν would asymptotically
recover a weighted average of subsample causal effects, for example, ω�x�ν�A1 × ν+ (1 −
ω)�x�ν�A2 × ν. The overall estimated dynamic causal effect matrices would thus just be

�x�ν�A ≡ ω�x�ν�A1 + (1 −ω)�x�ν�A2�

�z�ν�A ≡ ω�z�ν�A1 + (1 −ω)�z�ν�A2 �

Importantly, post-multiplying those dynamic causal effects matrices by any policy shock
vector ν yields sequences of private-sector outcomes x and policy instruments z that are
consistent with the common (sample-invariant) private-sector block (A.2) = (A.4).

Now consider using those causal effects matrices to implement Proposition 1; that is,
given baseline non-policy shock impulse responses {x(ε)�z(ε)} (which could come from
either subsample, or also from a weighted average), find ν̃ such that

Ãx

[
x(ε) +�x�ν�A × ν̃

] + Ãz

[
z(ε) +�z�ν�A × ν̃

] = 0�

and then compute the impulse responses

x(ε) +�x�ν�A × ν̃�

z(ε) +�z�ν�A × ν̃�

Since the counterfactual policy rule holds by construction of ν̃, and since the averaged
policy shock causal effects {�x�ν�A��z�ν�A} embed the common (sample-invariant) private-
sector block, it follows by the same arguments as in the proof of Proposition 1 that those
impulse responses equal xÃ(ε) and zÃ(ε), respectively.

A.5. Counterfactual Second-Moment Properties

Our analysis is largely focused on constructing counterfactuals conditional on par-
ticular non-policy shock paths ε. This is in keeping with much of the empirical policy
counterfactual literature that followed the lead of Sims and Zha (1995) (e.g., Bernanke,
Gertler, Watson, Sims, and Friedman (1997), Eberly, Stock, and Wright (2020), Antolin-
Diaz, Petrella, and Rubio-Ramírez (2021)). However, under some additional assump-
tions, our results can also be used to construct unconditional counterfactual second-
moment properties—that is, predict how variances and covariances of macroeconomic
aggregates would change under a counterfactual rule. This section provides the detailed
argument.

Setting

We consider a researcher that observes and is interested in the counterfactual proper-
ties of some vector of aggregates y = (x�z)—the endogenous outcomes and policy instru-
ments of our main analysis. We assume that, under the prevailing policy rule, this vector
of macro aggregates follows a standard structural vector moving average representation:29

yt =
∞∑
�=0

��εt−� =�(L)εt� εt ∼N(0� I)� (A.6)

29Given our focus on second moments, the normality restriction is purely for notational convenience (see,
e.g., Plagborg-Møller and Wolf (2021)).
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We would like to predict the second-moment properties of the macroeconomic aggregates
yt under some counterfactual policy rule (8).

If the researcher can estimate the causal effects of all shocks εt on the outcomes yt ,
then the identification argument is trivial: she simply applies Proposition 1 for each in-
dividual shock, stacks the resulting impulse responses into a new vector moving average
representation �̃(L), and from here computes the counterfactual second-moment prop-
erties. This approach may, however, not be feasible, as it requires the researcher to be
able to correctly disentangle all of the structural shocks driving the macro-economy.

Procedure

Our proposed procedure has three steps. First, the researcher estimates the Wold rep-
resentation of the observables yt . Second, using Proposition 1, she maps the impulse
responses to the Wold errors into new impulse responses corresponding to the coun-
terfactual policy rule. Third, she stacks those new impulse responses to arrive at a new
vector moving average representation, and from this representation constructs a new set
of second-moment properties. Our identification result states that, if the vector moving
representation (A.6) under the baseline rule is invertible, then this procedure correctly
recovers the desired counterfactual second moments.

Identification Result

Let �̃� denote the lag-� impulse responses of the observables yt to the shocks εt under
the counterfactual policy rule. The process for yt under the counterfactual policy rule thus
becomes

yt =
∞∑
�=0

�̃�εt−� = �̃(L)εt�

and so the second moments of the true counterfactual process are given by

�y (�) =
∞∑

m=0

�̃m�̃
′
m+�� (A.7)

Now consider instead the output of our proposed procedure. Let ut denote the Wold
errors under the observed policy rule, and let ε∗

t denote any unit-variance orthogonaliza-
tion of these Wold errors (e.g., ε∗

t = chol(Var(ut))−1 × ut). Then yt under the observed
policy rule satisfies

yt =�(L)ε∗
t =

∞∑
�=0

��ε
∗
t−��

where ε∗
t ∼N(0� I). Under invertibility—that is, �(L) has a one-sided inverse—we in fact

know that ε∗
t = Pεt , �(L) = �(L)P ′ for some orthogonal matrix P . The second step of

our procedure gives the counterfactual vector moving average representation

yt = �̃(L)ε∗
t �

Now consider the two lag polynomials �̃(L) and �̃(L). Since ε∗
t = Pεt , applying our coun-

terfactual mapping to the jth Wold innovation ε∗
j�t gives causal effects �̃j(L) = �̃(L)×p′

j ,
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where pj is the jth row of P .30 Thus, overall, we have

�̃(L) = �̃(L)P ′�

But then the second-moment properties of yt implied by our proposed procedure are
given as

∞∑
m=0

�̃m�̃
′
m+� =

∞∑
m=0

�̃mP
′P�̃′

m+� =
∞∑

m=0

�̃m�̃
′
m+� = �y (�)� (A.8)

which is exactly equal to (A.7), completing the argument.
Finally, we emphasize that this identification result inherently relies on invertibility.

Under invertibility, there is a static one-to-one mapping between true shocks εt and Wold
errors ε∗

t ; thus, if we can predict the propagation of the Wold errors under the counterfac-
tual rule, then we also match the propagation of the true shocks, and so we correctly re-
cover second-moment properties. Under non-invertibility, however, there is no analogous
one-to-one mapping, and so it is not guaranteed that second moments will be matched.

A.6. Optimal Policy Counterfactual in HANK

Section 2.4 used a HANK model to illustrate the logic of Proposition 1—the general
counterfactual rule identification result. We here do the same for the analogous optimal
policy identification result in Proposition 2.

We consider a policymaker with a standard dual mandate loss function

L= λππ
′W π + λyy

′W y (A.9)

with λπ = λy = 1. As in Section 2.4, we start by solving for the optimal policy using con-
ventional methods: that is, we first derive the policy rule corresponding to the first-order
conditions (18)–(20), then solve the model given that policy rule, and finally report the
result as the solid lines in the left and middle panels of Figure A.1. We see that, at the
optimum, the cost-push shock moves inflation by much more than output, consistent with
the assumed policy weights and the relatively flat Phillips curve. Compared to this optimal
policy, the simple baseline rule of the form (28) tightens too much (dotted).

We then instead use Proposition 2 to equivalently recover the optimal policy rule and
the corresponding impulse responses. We begin with the optimal rule itself. By (26), the
optimal rule is given as

λπ�
′
π�ν�AW π + λy�

′
y�ν�AW y= 0�

A researcher with knowledge of the effects of monetary policy shocks on inflation and
output, {�π�ν�A��y�ν�A}, is able to construct this optimal policy rule. We can then create
a counterfactual response to the cost-push shock using (11)–(13), again requiring only
knowledge of the causal effects of policy shocks as well as the impulse responses to the
cost-push shock under the baseline rule. As expected, the resulting impulse responses—
the dashed lines—are identical to those obtained by explicitly solving the optimal policy
problem. Finally, the right panel of Figure A.1 shows the optimal policy as a deviation ν̃

30To see this, let ν̃i denote the sequence of policy shocks that maps the true shock εi into its counterfactual
causal effects. Then the sequence of policy shocks ν̃∗

j that implements our counterfactual mapping for the

reduced-form shock ε∗
j is given as ν̃∗

j = ∑
i ν̃ipij , and thus we have �̃j (L) = ∑

i �̃i(L)pij , as claimed.
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FIGURE A.1.—The dotted and solid lines in the left and middle panels show output and inflation responses
to the cost-push shock εt for the HANK model with policy rule (28) and the optimal rule for the loss function
(A.9). The dashed lines give output and inflation counterfactuals constructed through the policy shocks on the
right, set in line with Proposition 2. Lighter shades correspond to news about policy at longer horizons.

from the prevailing rule. The optimal rule accommodates the inflationary cost-push shock
more than the baseline rule (28), so the required policy “shock” is persistently negative
(i.e., expansionary). Consistent with our discussion in Figure 1, we choose to display those
shocks ν̃ in a way that emphasizes that the optimum is achieved through a sequence of
date-0 policy shocks.

A.7. Counterfactuals With a Limited Number of Shocks

In Figure 1, we constructed counterfactuals using a limited number ns of policy shocks.
We here provide the computational details for this construction. We discuss the general
case of a researcher with access to ns shocks (which converges to our identification result
for ns → ∞), with the original proposal of Sims and Zha (1995) nested as the ns = 1
special case.

The approach of Sims and Zha leverages the idea that evidence on one policy shock—
that is, any single fixed path ν—is sufficient to enforce any given counterfactual ex post.
With ns distinct shocks, the counterfactual rule can be implemented ex post as well as
in ex ante expectation for the next ns − 1 time periods. To compute the counterfactuals
corresponding to this multi-shock case, we proceed as follows. First, at t = 0, we solve for
the ns-dimensional vector of policy shocks ν0

1:ns ≡ (ν0
0� � � � � ν

0
ns−1)′ such that, in response to

ε and ν0
1:ns , the counterfactual rule holds at t = 0 and is expected to hold for t = 1� � � � � ns −

1. Output and inflation at t = 0 are simply given as the thus-derived impulse responses to
ε and ν0

1:ns . Second, at t = 1, we solve for the ns-dimensional vector of shocks ν1
1:ns ≡

(ν1
0� � � � � ν

1
ns−1)′ such that, in response to the time-0 shocks {ε�ν0

1:ns} and the time-1 shocks
ν1

1:ns , the counterfactual policy rule holds at t = 1 and in expectation for t = 2� � � � � ns.
These impulse responses then give us output and inflation at t = 1. Continuing iteratively,
we then obtain the entire output and inflation impulse responses, as plotted in the left and
middle panels of Figure 1. The corresponding policy shock paths are shown in the right
panel.
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A.8. Global Identification Argument

We here extend our identification results to a general non-linear model with aggregate
risk.

Setting

We consider an economy that runs for T periods overall. As in our main analysis, the
economy consists of a private block and a policy block. Differently from our main analysis,
there is no exogenous non-policy shock sequence ε; rather, there is a stochastic event ωt

each period, with stochastic events drawn from a finite (nω-dimensional) set. Let xt (ωt) be
the value of the endogenous variables after history ωt ≡{ω0�ω1� � � � �ωt} and let zt (ωt) be
the realization of the policy instruments after history ωt . Let x and z be the full contingent
plans for all t ∈ {0�1� � � � � T} and all histories. x and z are vectors in R

nx×N and R
nz×N ,

respectively, where N = nω + n2
ω + · · · + nT+1

ω .
We can write the private-sector block of the model as the non-linear equation

H(x�z) = 0� (A.10)

Similarly, we can write the policy block corresponding to a baseline policy rule as

A(x�z) + ν= 0� (A.11)

where the vector of policy shocks ν is now nz × N-dimensional. We assume that, for any
ν ∈ R

nz×N , the system (A.10)–(A.11) has a unique solution. We write this solution as

x = x(ν)� z= z(ν)�

We want to construct counterfactuals under the alternative policy rule

Ã(x�z) = 0 (A.12)

replacing (A.11). We again assume that the system (A.10) and (A.12) has a unique solu-
tion, now written as (x̃� z̃). If we are interested in the counterfactual following a particular
path of exogenous events, then we are interested in selections from these vectors.

PROPOSITION A.1: For any alternative policy rule Ã, we can construct the desired coun-
terfactuals as

x(ν̃) = x̃� z(ν̃) = z̃� (A.13)

where ν̃ solves

Ã
(
x(ν̃)� z(ν̃)

) = 0� (A.14)

The solution ν̃ to this system exists and any such solution generates the counterfactual (x̃� z̃).

PROOF: We construct the solution ν̃ as

ν̃≡ Ã(x̃� z̃) −A(x̃� z̃)�

By the definition of the functions of x(•) and z(•), we know that

H
(
x(ν̃)� z(ν̃)

) = 0� (A.15)

A
(
x(ν̃)� z(ν̃)

) + Ã(x̃� z̃) −A(x̃� z̃) = 0� (A.16)
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Similarly, by the definition of the functions x̃(•) and z̃(•), we also know that

H
(
x̃(0)� z̃(0)

) = H(x̃� z̃) = 0� (A.17)

Ã
(
x̃(0)� z̃(0)

) = Ã(x̃� z̃) = 0� (A.18)

Since the system (A.15)–(A.16) by assumption has a unique solution for any ν̃, it thus
follows that we must have {x(ν̃) = x̃� z(ν̃) = z̃}.

We now show that any solution to (A.14) must generate (x̃� z̃). Proceeding by contra-
diction, consider any other ν̃ that solves (A.14) and suppose that either x(ν̃) 	= x̃ and/or
z(ν̃) 	= z̃. By definition of the functions x(•) and z(•) together with the property (A.14),
we know that

H
(
x(ν̃)� z(ν̃)

) = 0�

Ã
(
x(ν̃)� z(ν̃)

) = 0�

and so (x(ν̃)� z(ν̃)) is a solution of (A.10) and (A.12) that is distinct from (x̃� z̃). But by
assumption, only one such solution exists, so we have a contradiction. Q.E.D.

Informational Requirements

To construct the desired policy counterfactual for all possible alternative policy rules,
we in general need to be able to evaluate the functions x(•) and z(•) for every possible
ν ∈ R

nz×N . That is, we need to know the effects of policy shocks of all possible sizes at all
possible dates and all possible histories.

To understand how our baseline analysis relaxes these informational requirements, it is
useful to proceed in two steps: first removing uncertainty (but keeping non-linearity), and
then moving to a linear system.

1. Non-linear perfect foresight. For a non-linear perfect foresight economy, we replace
our general (nx + nz) × N-dimensional system with an (nx + nz) × T -dimensional
one:

H(x�z�ε) = 0�

A(x�z) + ν = 0�

Because of the lack of uncertainty, other possible realizations of the exogenous
events do not matter—only the particular time path, now denoted ε, is relevant.
Proceeding exactly in line with the analysis above, we can conclude that now we
need the causal effects of all possible policy shocks ν ∈ R

nz×T at the equilibrium path
induced by ε. Thus, since we only care about the actual realized history of the exoge-
nous inputs, the dimensionality of the informational requirements has been reduced
substantially.

2. Linear perfect foresight/first-order perturbation. Linearity further reduces our in-
formational requirements in two respects. First, because of linearity, to know the
effects of every possible ν ∈ R

nz×T , it suffices to know the effects of nz × T distinct
paths ν that together span R

nz×T . Second, estimates given any possible exogenous
state path of the economy suffice, simply because the effects of policy and non-
policy shocks are additively separable. We have thus reduced the problem to the
(still formidable) one of finding the effects of nz × T distinct policy shock paths.
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A.9. Non-Linear Policy Rules

We emphasize that the simplicity of our baseline identification results in Section 2.3
relative to the much more involved discussion in Appendix A.8 hinges on linearity of the
non-policy block (6). Non-linear policy blocks, on the other hand, are straightforward to
handle with the same informational requirements as in our baseline analysis. Specifically,
suppose the object of interest is the counterfactual propagation of a shock sequence ε
under the following example of a non-linear policy rule:

z= max{Ãxx� z}� (A.19)

Compared to (8), this policy rule is simplified to set Ãz = −I, but then enriched to allow
for a canonical form of non-linearity—a kink in the policy rule, for example, a zero lower
bound constraint on nominal interest rates. Proceeding perfectly analogously to the proof
of Proposition 1, we see that we can construct counterfactuals corresponding to (A.19)
by solving for a sequence of policy shocks ν̃ such that (A.19) holds for all t = 0�1� � � � .
Intuitively, by our unchanged assumptions on the non-policy block (6), it is still just the
time path of the policy instrument that matters for private-sector behavior, irrespective
of whether this time path is generated by a linear rule like (7) or a non-linear rule like
(A.19).

APPENDIX B: DETAILS FOR EMPIRICAL METHOD

This appendix provides econometric implementation details for our empirical method.
Appendix B.1 begins with counterfactuals for a given alternative policy rule, while Ap-
pendix B.2 discusses optimal policy counterfactuals.

B.1. Policy Rule Counterfactuals

The solution to the problem (31) is given as

s = −[
(Ãx�x�A + Ãz�z�A)′(Ãx�x�A + Ãz�z�A)

]−1

× [
(Ãx�x�A + Ãz�z�A)′(ÃxxA(ε) + ÃzzA(ε)

)]
�

The final step is simply to compute impulse responses to the combination of (i) the orig-
inal non-policy shock ε and (ii) the derived policy shocks s. For counterfactual second-
moment properties (as discussed in Appendix A.5), the only change is that these steps
are applied separately for each innovation in the Wold representation of observed macro
aggregates.

B.2. Optimal Policy Counterfactuals

For our optimal policy counterfactual, we analogously consider the following con-
strained optimal policy problem:

min
s

1
2

nx∑
i=1

λix
′
iW xi (B.1)

such that

x= x(ε) +�x�As�
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This gives the optimality conditions:

(W ⊗�)x+ϕx = 0�

�′
x�Aϕx = 0�

where � = diag(λ1�λ2� � � � ).
Solving this system gives our optimal policy counterfactual. The solution is given as

s = −[
�′

x�A(�⊗W )�x�A
]−1 × [

�′
x�A(�⊗W )xA(ε)

]
�

As before, for counterfactual second-moment properties, the analysis is repeated for im-
pulse responses to all Wold innovations separately.

APPENDIX C: SUPPLEMENTARY DETAILS FOR MONETARY APPLICATIONS

This appendix provides further results supplementing the discussion in Section 4 on
our systematic monetary policy rule counterfactual applications. Appendices C.1 and C.2
begin by describing the data and our baseline monetary policy shock causal effect esti-
mates. Results for the policy counterfactuals omitted in the main text are presented in
Appendix C.3, and we investigate the robustness of our results to the use of other mone-
tary policy shock measures in Appendix C.4. Finally, we in Appendix C.5 illustrate how to
use our monetary shock estimates to construct counterfactual second-moment properties.

C.1. Data

Our analysis of investment-specific technology shocks follows Ben Zeev and Khan
(2015), while our monetary policy shock identification closely mimics that of (i) Romer
and Romer (2004) and (ii) Gertler and Karadi (2015).

Outcomes

We are interested in impulse responses of three outcome variables: the output gap,
inflation, and the policy rate. For the output gap, we use the series ygap_hp of Barnichon
and Mesters (2020).31 For inflation, we compute annual changes in the GDP deflator
(using the series pgdp from the replication files of Ramey (2016)). Finally, we consider
the federal funds rate as our measure of the policy rate, obtained from the St. Louis
Federal Reserve FRED database. In keeping with much prior work, we also additionally
control for commodity prices, with our measure obtained from the replication files of
Ramey (2016) (lpcom). All series are quarterly.

Shocks & Identification

We take the investment-specific technology shock series from Ben Zeev and Khan
(2015) (bzk_ist_news in the replication files of Ramey (2016)), the Romer and Romer
(2004) shock series from the replication and extension of Wieland and Yang (2020)
(rr_3), and the high-frequency monetary policy surprise series from Gertler and Karadi

31All results are essentially unchanged if we use a measure of log real GDP instead (rgdp scaled by pop,
taken from the replication files of Ramey (2016)).
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(2015) (mp1_tc in the replication files of Ramey (2016)).32 When applicable, the shock
series are aggregated to quarterly frequency through simple averaging.

In Appendix C.4, we examine the robustness of our conclusions to other policy shock
series—those of Aruoba and Drechsel (2022) and Miranda-Agrippino and Ricco (2021).
For the former, we obtain the shock series directly from their replication files (shock).
For the latter, we use the publicly available replication files to construct the SVAR-IV
shock series for the full sample (from 1979:M1 onwards), with the shocks constructed
at the posterior mode of the estimated reduced-form VAR (the specification for their
Figure 3).

C.2. Shock and Policy Dynamic Causal Effects

For maximal consistency, we try to estimate all impulse responses within a common
empirical specification. For the investment-specific technology shocks, we order the shock
measure first in a recursive VAR containing our outcomes of interest (following Plagborg-
Møller and Wolf (2021)), estimated on a sample from 1969:Q1 to 2007:Q4. For our two
monetary policy shocks, we estimate a single VAR in the two shock series, our three out-
comes of interest, as well as commodity prices, also estimated from 1969:Q1 to 2007:Q4.33

For identification, we order the Gertler and Karadi shock first (again consistent with the
results in Plagborg-Møller and Wolf (2021)) and the Romer and Romer shock second-to-
last, before the federal funds rate (the additional “exogeneity insurance” as in Romer and
Romer (2004)).

We use three lags in the technology shock specification, and four lags in the joint mone-
tary policy VAR. We furthermore estimate all VARs with a constant as well as a determin-
istic linear trend. For the baseline investment-specific technology shock, we fix the OLS
point estimates. We construct policy counterfactuals using our identified monetary policy
shocks, taking into account their estimation uncertainty. Since the transmission of both
shocks is estimated within a single VAR, we can draw from the posterior and compute the
counterfactuals for each draw, thus taking into account joint estimation uncertainty.

Results

The OLS point estimates for the technology shocks of Ben Zeev and Khan (2015) are
reported as the dotted lines in Figure 3. For monetary policy, the estimated causal effects
for our two outcomes of interest as well as the policy instrument are displayed in Fig-
ure C.1. The results are in line with prior work: both policy shocks induce the expected
signs of the output gap and inflation responses, though the response shapes are quite dis-
tinct, consistent with the differences in the induced interest rate paths. We also note that
the magnitudes of the estimated responses are at the lower end of empirical estimates (cf.
Table 2 and Figures 1 and 2 in Ramey (2016)).

C.3. Results for Omitted Monetary Policy Counterfactuals

In Section 4, we presented detailed results for only three of our policy rule
counterfactuals—strict output gap targeting, the Taylor rule, and optimal average infla-
tion targeting policy. We here provide the remaining results.

32Results are very similar if we use the alternative surprise series ff4_tc instead.
33The Gertler and Karadi shock series is only available from 1988 onwards. We thus follow prior work in the

macro IV literature (e.g., Känzig (2021)) and set the missing values to zero.



TIME-SERIES REGRESSIONS AND POLICY COUNTERFACTUALS 15

FIGURE C.1.—Impulse responses after the Romer and Romer monetary policy shock (top panel) and the
Gertler and Karadi monetary policy shock (bottom panel). The gray areas correspond to 16th and 84th per-
centile confidence bands, constructed using 10,000 draws from the posterior distribution of the reduced-form
VAR parameters.

Nominal Interest Rate Peg

Results for the nominal interest rate peg are presented in Figure C.2. We see that
the desired counterfactual policy is implemented well from a couple of quarters out on-
wards, but that nominal rates are still cut by quite a bit too much immediately after the
shock. Since rates are cut by less than in the baseline, the output gap and inflation remain
marginally lower for a longer period of time. Compared with the policy counterfactuals
discussed in Section 4, we see that a nominal rate peg is a counterfactual policy that is not
spanned particularly well by our available monetary shock evidence.

Nominal GDP Targeting

Results for nominal GDP targeting are presented in Figure C.3. The counterfactual
policy is implicitly defined by the targeting rule

π̂t + (̂yt − ŷt−1) = 0� ∀t = 0�1� � � �
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FIGURE C.2.—Output gap, inflation, and interest rate impulse responses to a contractionary investmen-
t-specific technology shock under the prevailing baseline rule (dotted) and the best feasible approximation to
a nominal rate peg (solid), computed following (31). The shaded areas correspond to 16th and 84th percentile
confidence bands. Perfect nominal rate peg (i.e., ît = 0 for all t) is displayed as the black dashed line.

We find that implementation errors are quite small throughout (black dashed). Interest-
ingly, the policy instrument path is quite close to the estimated baseline (dotted gray),
indicating that nominal GDP is already stabilized quite well under the prevailing rule.

C.4. Counterfactuals With Alternative Shock Measures

Some recent work has questioned the validity of the canonical monetary policy shocks
of Romer and Romer and Gertler and Karadi (see Ramey (2016), Nakamura and Steins-
son (2018), and the references therein). To examine the robustness of our conclusions to

FIGURE C.3.—Output gap, inflation, and interest rate impulse responses to a contractionary investmen-
t-specific technology shock under the prevailing baseline rule (dotted) and the best feasible approximation
to nominal GDP targeting (solid), computed following (31). The shaded areas correspond to 16th and 84th
percentile confidence bands. Given each counterfactual draw for the output gap, the sequence of inflation
corresponding to perfect nominal GDP targeting (i.e., so that π̂t + (̂yt − ŷt−1) = 0 for all t) is displayed as the
black dashed line.
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the use of alternative measures of monetary policy shocks, we now use the policy shock
series of Miranda-Agrippino and Ricco (2021) and Aruoba and Drechsel (2022). These
shock series are constructed using methods similar to those of Gertler and Karadi and
Romer and Romer, but use a richer set of controls for the state of the economy as per-
ceived by the Federal Reserve.

We study the propagation of these shocks in a single integrated VAR, exactly as in
our baseline analysis. We find that the two shocks differ in the implied interest rate
movements, with the shock of Miranda-Agrippino and Ricco (2021) mirroring the transi-
tory rate movement of Romer and Romer (2004), and the shock of Aruoba and Drech-
sel (2022) similar to the gradual interest rate movement of Gertler and Karadi (2015).
We then leverage these shock estimates to construct monetary policy rule counterfactu-
als, proceeding exactly as in Section 4. Results for our two main systematic policy rule
counterfactuals—output gap targeting and the Taylor rule—are displayed in Figure C.4.

FIGURE C.4.—Output gap, inflation, and interest rate impulse responses to a contractionary investmen-
t-specific technology shock under the prevailing baseline rule (dotted gray) and the best feasible approxima-
tion to output gap targeting (solid, top panel) and a simple Taylor-type rule ît = 0�5̂it−1 + 0�5 × (1�5π̂t + ŷt)
(solid, bottom panel) computed following (31) and using the monetary shocks of Miranda-Agrippino and Ricco
(2021) and Aruoba and Drechsel (2022). The shaded areas correspond to 16th and 84th percentile confidence
bands.
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The main takeaway is that the systematic monetary policy rule counterfactuals are very
similar to our headline results. The underlying reason is simply that the impulse responses
to the Miranda-Agrippino and Ricco and Aruoba and Drechsel shocks are quite similar to
those displayed in Figure C.1 for Romer and Romer and Gertler and Karadi. The perhaps
most notable difference is that the shocks of Miranda-Agrippino and Ricco and Aruoba
and Drechsel have somewhat larger effects on output and inflation (for a given peak in-
terest rate response), so the interest rate cut for the output gap targeting counterfactual
is somewhat less steep, and the inflation spike is somewhat more pronounced.

C.5. Counterfactual Second-Moment Properties

In this section, we illustrate how estimates of monetary policy shock causal effects can
also be used to construct counterfactual average business-cycle statistics. Specifically, we
construct optimal policy counterfactuals for the average inflation targeting loss function
(32).

Our procedure follows the steps outlined in Appendices A.5 and B.2. First, we estimate
the Wold representation for our three macroeconomic observables (output gap, inflation,
policy rate), giving us impulse responses to the three reduced-form Wold innovations.
Then, for each of these three reduced-form shocks, we find the linear combination of
date-0 monetary policy shocks that minimizes the policymaker loss function. We then
stack these three sets of impulse responses in a new, counterfactual Wold representation,
and finally use it to construct counterfactual second-moment properties. We do so for
10,000 draws of monetary policy shock causal effects from our reduced-form VAR.

Results are reported in Table C.I, where the top panel shows business-cycle statistics un-
der observed policy conduct while the bottom panel presents our optimal policy counter-
factual. We see that the empirically available subspace of two identified monetary shock
paths suffices to somewhat lower the standard deviation of the output gap and inflation.
However, the reported gains in aggregate volatility are not substantial, suggesting that
rather little policy improvement was feasible within our identified space of policy shock
causal effects. These conclusions echo our conditional shock conclusions in Section 4.2.

TABLE C.I

COUNTERFACTUAL BUSINESS-CYCLE STATISTICS, OPTIMAL AIT POLICY RULE

Standard Deviation (per cent) Correlation With Output Gap

Baseline
Output Gap 1.52 –
Inflation 1.69 0.14
Nominal Rate 2.68 0.27

Counterfactual
Output Gap 1.27 –

(1.06, 1.44)
Inflation 1.38 −0.02

(1.27, 1.53) (−0.18, 0.11)
Nominal Rate 2.12 0.39

(1.73, 2.62) (0.24, 0.53)

Note: Baseline and counterfactual business-cycle statistics for the best Lucas critique-robust approximation to an optimal average
inflation targeting monetary policy rule, computed as discussed in Appendix B.2 applied to each of the three reduced-form innovations
in the Wold representation of output gap, inflation, and policy rate. The values in brackets correspond to 16th and 84th percentile
confidence bands.
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