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1 Introduction

How would the economy have evolved if policy had been set differently? For example, how

would a different monetary policy reaction function have shaped the average business cycle?

And how would it have changed particular historical episodes?

We propose a new approach to this classic question of policy counterfactual evaluation—

“VAR-Plus.” The usual strategy is to build a dynamic stochastic general equilibrium (DSGE)

model that can account for the entire history of macroeconomic fluctuations, change policy in

that model, re-solve it, and then report counterfactual outcomes.1 A commonly held concern

with this approach is that the “shocks” that are added to the model to fit the data are more

akin to statistical residuals than to true structural disturbances. As a result, some view these

shocks as “dubiously structural” (e.g., see Chari et al., 2009), casting doubt on this method

of analysis.2 The principal appeal of our approach—which builds on and extends the recent

“semi-structural” policy counterfactual literature (Barnichon and Mesters, 2023; McKay and

Wolf, 2023)—is that it entirely sidesteps the need for the researcher to say anything about

the underlying shocks driving the history of cyclical fluctuations.

Identification result. We are interested in the counterfactual evolution of the macro-

economy under alternative policy rules, both unconditional—i.e., how the “average” business

cycle would unfold—and conditional on particular historical episodes. Extending prior results

in McKay and Wolf (2023), we show that, across a large family of linearized macroeconomic

models, these counterfactuals are pinned down by just two “sufficient statistics.”

(i) Reduced-form projections. The first statistic is a set of reduced-form projections. For

unconditional average business-cycle counterfactuals, those projections are impulse re-

sponses of macroeconomic aggregates to reduced-form (“Wold”) innovations. For coun-

terfactuals conditional on particular episodes, the projections are forecasts, from each

date in the episode of interest. These projections need to be relative to an informa-

tion set that spans the (unknown) shocks buffeting the macro-economy—i.e., we are

maintaining the assumption of “invertibility”, as typically done in the applied macroe-

conometrics literature (Sims, 1980; Fernández-Villaverde et al., 2007).

1Smets and Wouters (2007) is the exemplar of this approach. A notable recent example is Crump et al.
(2023), who re-evaluate U.S. monetary policy during the post-covid inflationary episode.

2Commonly discussed examples of such “dubiously structural” shocks are price and wage mark-up shocks
as well as innovations to household discount factors as consumer demand shocks.
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(ii) Policy causal effects. The second statistic is the set of dynamic causal effects of changes

in policy on current and future macroeconomic aggregates—i.e., the space of macroe-

conomic outcomes that is achievable through manipulation of the policy instrument(s),

now and in the future. For example, for monetary policy, the researcher needs to know

the causal effects of changes in the policy rate both today and at all future horizons.

The identification result reveals that any two structural models in the class we consider—

no matter their detailed parametric structure, and in particular completely independently of

the structural shocks they feature—that agree on these two sufficient statistics will also agree

on the policy counterfactuals that they imply. The intuition has two parts. First, knowledge

of policy causal effects ensures that we can correctly predict how any given reduced-form

projection would be altered by a hypothetical change in policy. Second, given the assumption

of invertibility, correctly predicting how reduced-form projections change is equivalent to

correctly predicting the counterfactual propagation of the economy’s true (though unknown)

structural shocks, simply because those shocks are a 1-1 function of the Wold residuals.

We operationalize this identification result using our “VAR-Plus” method. The approach

first constructs the required sufficient statistics, and with those evaluates the counterfactuals.

Getting the counterfactuals. In the first step of our methodology we leverage em-

pirical time-series techniques—like Vector Autoregressions (VARs)—to recover the reduced-

form projections (i) together with some policy causal effects (ii).3

(i) A reduced-form VAR is a convenient way of estimating the Wold representation of the

data, and from here the required projections. This VAR should be specified with the

invertibility requirement in mind; in practice, this requires including time series that

are strong predictors of the variables whose counterfactual evolution is to be evaluated.

(ii) The standard semi-structural time series toolkit—like Structural VARs—can be used

to estimate the causal effects of identified shocks to the policy instrument under consid-

eration (e.g., see Ramey, 2016). In practice, since empirical evidence on policy shocks is

limited, this will only partially pin down the required full space of policy causal effects.

For example, for monetary policy, empirical analysis may deliver the causal effects of

a transitory rate cut, but may be silent on the effects of persistent rate changes.

3We are using “VARs” as a shorthand for a wider menu of time series estimation techniques, including in
particular also Local Projections (LPs). See, e.g., Plagborg-Møller and Wolf (2021) and Montiel Olea et al.
(2024) for discussions of the trade-offs between the two estimation methods, which are not our focus here.

3



To complement the purely empirical evidence of the “VAR” step, we next rely on addi-

tional structural assumptions (“Plus”) to complete part (ii). In this step we extrapolate from

the empirical VAR evidence on some policy interventions to the full space of all possible

interventions. Specifically, we consider one or more candidate models of policy transmission,

and estimate them by requiring consistency with the policy shock evidence from the VAR

step—i.e., model estimation via impulse-response matching (as in Christiano et al., 2005,

2010). This step yields a distribution over models of policy transmission and thus over the

dynamic causal effects of any possible change in policy; importantly, that distribution is by

design consistent with the available policy shock evidence, and then extrapolates beyond

it—to predict the effects of other, unobserved policy changes—using model structure.

Leveraging our identification result, and with sufficient statistics (i) and (ii) in hand, we

can finally evaluate the counterfactual of interest.

Why this approach? The principal appeal of our “VAR-Plus” approach is that it relies

on weaker assumptions than the “quantitative DSGE” paradigm, and is thus less vulnerable

to concerns of model mis-specification. To explain why, we review the pieces of information

that our approach uses to answer a given policy counterfactual question. If the contemplated

counterfactual involves a policy change that is spanned by the empirical VAR evidence on

policy transmission—e.g., it only involves a transitory change in nominal rates—, then our

method delivers an appealingly semi-structural counterfactual: all that is required are the

theoretical identification result coupled with the VAR evidence. This will be the case, at

least approximately, in two of our three applications. If instead the VAR evidence does not

suffice, then the “Plus” step—i.e., the extrapolation of policy causal effects—starts to play

a role. Importantly, however, this extrapolation is the only role for model structure; there is

never any need to specify the shocks driving the cycle, thus sidestepping a key concern with

the full-information, likelihood-based DSGE approach, as reviewed earlier.

Applications. We showcase our method with applications to monetary policy counter-

factuals. We begin by constructing the required sufficient statistics.

(i) We first estimate a large-dimensional reduced-form VAR, with the specification closely

following that of Angeletos et al. (2020). We collect the VAR-implied Wold innovation

impulse responses as well as forecasts at each in-sample date.

(ii) We take the monetary shock series of Aruoba and Drechsel (2022), and use VAR meth-

ods to estimate its dynamic causal effects on macroeconomic aggregates. This evidence
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pins down the propagation of a transitory change in interest rates.

To extrapolate from transitory to more persistent rate changes, we consider a variety of

quantitative business-cycle models, notably canonical RANK and HANK models (see

Christiano et al., 2005; Kaplan et al., 2018), but also extended behavioral versions of

these models with cognitive discounting (as in Gabaix, 2020). We find that all models

can match the transitory monetary shock evidence quite closely; the RANK and HANK

models furthermore largely agree on the extrapolation beyond the observed policy

experiment to other horizons. On the other hand, models with cognitive discounting

extrapolate quite differently; in particular, and as expected, they tend to imply much

weaker effects of future policy on current outcomes.

With the sufficient statistics in hand, we study three monetary policy counterfactuals.

1. We ask whether U.S. monetary policy could have reduced the volatility of the aggregate

output gap as well as inflation over a post-war sample period. Our analysis suggests that

substantial volatility reductions would have been feasible, in particular for output.

2. We study how the Great Recession would have evolved in the absence of a binding lower

bound on nominal rates. We find that a standard “dual mandate” central bank would have

liked to reduce rates substantially into negative territory, suggesting that the implemented

unconventional policy measures were insufficient.

These two counterfactuals are largely pinned down by the VAR step, with rather little role for

the “Plus”-step extrapolation. The same is not true, however, for our third counterfactual.

3. We evaluate monetary policy options after the summer of 2021, when inflation had started

to accelerate. The inflation spike is expected to be persistent, giving a larger role for far-

ahead changes in policy. In the baseline HANK and RANK models, the policymaker can

use forward guidance to steer inflation expectations, reducing current inflation at no cost

to output in the short run. In our behavioral models, this strategy is much less effective.

Given this disagreement across models and thus across the (relevant) policy causal effects,

our method indicates large uncertainty on the counterfactual path of interest rates.

The large uncertainty in the third counterfactual reflects an important gap in our understand-

ing of monetary policy transmission. The available empirical evidence only pins down the

causal effects of transitory rate changes; some counterfactuals, however, depend crucially on
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the effects of persistent changes in policy. Standard HANK and RANK models extrapolate

to such persistent monetary policy changes in quite similar ways, while less forward-looking

behavioral models behave very differently. Discriminating between such models thus appears

to be of chief importance—and in fact much more important than the incomplete-markets

margin (i.e., RANK vs. HANK) that has received much attention recently.

Further literature. We contribute to a recent literature on policy shock impulse re-

sponses as “sufficient statistics” for policy counterfactuals (see McKay and Wolf, 2023; Barni-

chon and Mesters, 2023, 2024). Our analysis here differs in two key ways. First, to construct

our counterfactuals of interest, we need to evaluate a counterfactual system for the propa-

gation of a full set of reduced-form (Wold) innovations. We discuss when this reduced-form

approach is valid, emphasize that it allows the researcher to remain silent on the primitive

shocks driving the cycle, and connect our analysis with the critique of Chari et al. (2009).

Second, we combine empirical VAR evidence with model-based policy causal effect extrapo-

lation to evaluate our counterfactuals exactly, rather than just approximately. Our analysis

reveals when the empirical evidence alone already suffices, when additional policy causal

effect extrapolation is necessary, and how the dominant frameworks in the literature achieve

this extrapolation. As such, our analysis also echoes the “sufficient statistics” results of the

more recent trade and New Keynesian pricing literatures (e.g., as in Arkolakis et al., 2012;

Auclert et al., 2022). Finally, our combination of direct empirical evidence and model-based

policy causal effect extrapolation—plus our emphasis on invertibility and econometrician

information sets—also distinguishes our analysis from Hebden and Winkler (2021), who rely

exclusively on model-implied policy causal effects for policy evaluation.

We note that the estimand of our strategy is the effect of a systematic change in policy

rule that is communicated to and understood by the private sector, as is typically assumed

in the DSGE literature. This differs from the estimand of Sims and Zha (1995), who instead

contemplate experiments in which the private sector is repeatedly surprised by policy shocks

that implement the counterfactual, raising concerns related to the Lucas (1976) critique.

Outline. We begin in Section 2 with the identification result. We present our “VAR-Plus”

methodology and discuss its theoretical properties in Section 3. Our applications to monetary

policy counterfactuals follow in Sections 4 and 5. Section 6 concludes. Supplementary results

follow in several appendices, and all replication codes are available online.4

4https://github.com/tcaravello/varplus
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2 Identification result

This section presents our identification result. Sections 2.1 to 2.3 state and prove the main

result, while Section 2.4 digs deeper into the key role played by the invertibility assumption.

Our discussion here closely builds on but materially extends McKay and Wolf (2023).

2.1 General environment

Our identification result applies to a family of linearized infinite-horizon models with aggre-

gate risk. The results are most easily stated using linearized perfect-foresight notation.5

Our description of the economic environment proceeds in two steps. First, we begin by

introducing the structural vector moving-average (SVMA) representation of our economy.

Second, we present the linearized perfect-foresight system whose transition paths equal the

impulse responses collected in the SVMA coefficients.

Stochastic economy. We assume that our stochastic economy admits representation as

a general SVMA(∞):

yt =
∞∑
ℓ=0

Θℓεt−ℓ. (1)

yt is a vector of macroeconomic aggregates, the shock vector εt is distributed as

εt ∼ N(0, I),

and the ny×nε-dimensional matrices Θℓ denote the impulse response of the vector of macroe-

conomic observables yt at horizon ℓ to a date-t vector of shocks εt. We will throughout impose

the high-level assumption that the matrices Θℓ are absolutely summable across ℓ. Finally, in

all of the following, the notation Et[•] will be reserved for expectations conditioning on the

sequence of shocks {εt−ℓ}∞ℓ=0 up to date t. Consistent with the classic Frisch (1933) impulse-

propagation paradigm, the SVMA(∞) system (1) allows for an unrestricted dynamic linear

transmission from shocks εt to outcomes yt.

Impulse-response system. Leveraging the equivalence between linearized systems with

aggregate risk and perfect-foresight transition paths, we obtain the impulse responses Θℓ as

5By certainty equivalence, solutions to linearized perfect-foresight systems correspond to impulse response
functions in linearized economies with aggregate risk (Fernández-Villaverde et al., 2016; Auclert et al., 2021).
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solutions of a linear, perfect-foresight, infinite-horizon economy. Below boldface denotes time

paths for t = 0, 1, 2, . . . , and all variables are expressed in deviations from the deterministic

steady state. The economy is summarized by the system

Hwwww +Hxxxx+Hzzzz +Hee0 = 000, (2)

Axxxx+Azzzz +Avv0 = 000. (3)

Here xt and wt are nx- and nw-dimensional vectors of endogenous variables, respectively, zt is

an nz-dimensional vector of policy instruments, et is an ne-dimensional vector of exogenous

structural shocks, vt is an nv-dimensional vector of policy shocks, and we write yt = (x′t, z
′
t)

′,

εt = (e′t, v
′
t)

′.6 The distinction between w and x is that the variables in x are observable

while those in w are not. Equation (2) summarizes the nx+nw-dimensional non-policy block

of the model, with {Hw,Hx,Hz,He} embedding private-sector relations. Equation (3) is the

policy rule, with the instrument z set as a function of x and v.

Given the date-0 shocks {e0, v0}, an equilibrium is a set of bounded sequences {www,xxx,zzz}
that solve (2) - (3). We will assume that the policy rule {Ax,Az} is such that an equilibrium

exists and is unique. We write the implied mapping from shocks to outcomes as

yℓ = Θℓ · ε0.

Stacked together, those perfect-foresight mappings from date-0 shocks to date-ℓ outcomes

deliver the SVMA(∞) representation (1).

The model (2) - (3) embeds an economically meaningful restriction—“instrument suffi-

ciency”, in the language of McKay and Wolf (2023). Policy is allowed to shape private-sector

outcomes only through the current and expected future values of the policy instrument, i.e.,

via the path zzz; whether or not that path is the result of the systematic component of policy

(i.e., Ax and Az) or because of a policy shock (i.e., v) is entirely irrelevant.7 As discussed

in more detail by McKay and Wolf, many modern macro models satisfy this property, from

representative-agent New Keynesian models (Christiano et al., 2005; Smets and Wouters,

2007), to heterogeneous-agent environments (Kaplan et al., 2018), and also including certain

models with behavioral frictions (e.g., like Gabaix, 2020, see also Appendix A.1).

6The boldface vectors {www,xxx,zzz} stack time paths for all variables (e.g., xxx = (xxx′
1, . . . ,xxx

′
nx
)′). The maps

{Hw,Hx,Hz,He} and {Ax,Az,Av} are conformable and map bounded sequences into bounded sequences.
7Mathematically, this model property is reflected in the implicit assumption that the private-sector linear

maps {Hw,Hx,Hz,He} are invariant to the policy rule {Ax,Az,Av}.
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Some definitions. Under our assumptions on (1), the autocovariance function Γy(•) of
macroeconomic observables yt exists and by standard arguments is given as

Γy(ℓ) =
∞∑
m=0

ΘmΘ
′
m+ℓ.

Next, the Wold representation of yt is

yt =
∞∑
ℓ=0

Ψℓut−ℓ, (4)

where u†t ≡ yt−E (yt | {yτ}−∞<τ≤t−1) denotes one-step-ahead forecast errors, Var(u†t) = Σu,

and ut ≡ chol(Σu)
−1u†t are orthogonalized Wold innovations, with Var(ut) = I and chol(•)

giving the lower-triangular Cholesky factor. Our assumptions on (1) ensure that this Wold

representation exists, features no deterministic term, and that Ψ(L) is square-summable.

2.2 Objects of interest

We wish to study the evolution of the economy if policy were set as

Ãxxxx+ Ãzzzz = 000 (5)

rather than (3). The macroeconomic observables yt under the counterfactual policy rule

would then follow the counterfactual SVMA process

ỹt =
∞∑
ℓ=0

Θ̃ℓεt−ℓ, (6)

with the convention that now εt = et, and where the shock impulse responses Θ̃ℓ are derived

from the solution of the perfect-foresight system (2) together with (5).8

To define our counterfactuals of interest we need to tackle some subtleties on when

precisely the counterfactual rule (5) is followed. In particular, the counterfactual SVMA (6)

embeds the assumption that the counterfactual rule (5) is actually followed forever. In some

of our “conditional” counterfactuals, however, we will assume that the policymaker instead

8In writing the counterfactual SVMA (6) we are implicitly assuming that the counterfactual policy rule
(5) induces a unique equilibrium. Under multiplicity, our identification results will pin down counterfactual
moments for one possible equilibrium, by the exact same arguments as in McKay and Wolf (2023).
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unexpectedly changes to the alternative rule (5) at some date t∗, having followed the original

rule (3) up to t∗ − 1. In that case we will have

ỹt =
t−t∗∑
ℓ=0

Θ̃ℓεt−ℓ︸ ︷︷ ︸
new shocks after t∗

+ ỹ∗t︸︷︷︸
initial conditions

(7)

The first term in (7) is straightforward: all newly arriving shocks εt propagate according to

the new counterfactual impulse responses Θ̃ℓ. The second term reflects initial conditions: at

date t∗, the policymaker revises the planned policy path to ensure that current and expected

future values of x and z are related according to (5). Letting y∗t = Et∗−1 [yt] denote date-t
∗−1

expectations under the initially prevailing rule, the initial conditions term ỹ∗t can thus be

obtained by solving the system

Hw(w̃ww
∗ −www∗) +Hx(x̃xx

∗ − xxx∗) +Hz(z̃zz
∗ − zzz∗) = 000, (8)

Ãxx̃xx
∗ +Azz̃zz

∗ = 000, (9)

i.e., a system written in terms of forecast revisions.9 We can now state our counterfactuals

of interest.

1. Unconditional business cycles. We seek the counterfactual second moments of yt,

given as

Γ̃y(ℓ) =
∞∑
m=0

Θ̃mΘ̃
′
m+ℓ.

Unconditional “average” counterfactuals of this sort have attracted interest in prior work;

examples include Rotemberg and Woodford (1997) or Del Negro and Schorfheide (2004).

2. Conditional episodes. We distinguish two kinds of conditional counterfactuals—forecasts,

and full historical episodes.

(i) Conditional forecasts. Consider some date t∗, and suppose the policymaker from t∗

commits to the new rule (5). We may ask how, from that point onward, the economy

9Here, boldface denotes sequences from t∗ onwards. (9) says the new, counterfactual policy rule holds.
By (8), the revised forecasts remain consistent with all private-sector relationships. Finally, under our
assumptions on equilibrium existence and uniqueness, it follows that (8) - (9) has a unique solution.
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would be predicted to evolve; i.e., we would like to recover the expectation

Et∗ [ỹt∗+h] = Θ̃hεt∗ + ỹ∗t∗+h.

Such conditional forecasts are key inputs for central banks (see Svensson, 1997) and

have been studied widely in the academic literature (e.g., Antolin-Diaz et al., 2021).

(ii) Historical evolution. Consider a particular episode, t ∈ [t1, t1 + 1, . . . , t2]. We may

ask how the economy would have evolved over that time window if the policymaker

had followed the rule (5) from date t1 onward; i.e., we seek to recover

ỹt =

t−t1∑
ℓ=0

Θ̃ℓεt−ℓ + ỹ1t , ∀t ∈ [t1, t1 + 1, . . . , t2]

where ỹ1t ≡ Et1−1 [ỹt] reflects initial conditions as of date t1. Policy counterfactuals

for particular historical episodes have also been the subject of much prior work; e.g.,

see Eberly et al. (2020) for a recent example.

While McKay and Wolf (2023) mainly focus on policy counterfactuals for particular struc-

tural shocks (e.g., an oil shock), our counterfactuals here necessarily involve all shocks hitting

the macro-economy. As a result, the assumption of invertibility will take center stage when

we turn to identification in Section 2.3.

2.3 Identification result

This section states and proves the main identification result. We first introduce some addi-

tional notation on how policy can affect the macro-economy.

Policy causal effects. Recall that the policy rule (3) is subject to the nv-dimensional

vector of policy shocks vt. To state our identification result, we will instead consider a full

menu of policy shocks that perturb the policy rule at each possible horizon; that is, we have

Axxxx+Azzzz + ννν = 000 (3’)

where the policy shock vector ννν is now unrestricted—i.e., we allow for arbitrarily flexible

wedges in the rule at each date t = 0, 1, 2, . . . . Analogously to the discussion in Section 2.1,
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the solution of the system (2) - (3’) given an arbitrary policy shock vector ννν alone yields

yyy = Θν · ννν.

Θν is the space of allocations implementable through policy shocks—i.e., the paths of macroe-

conomic aggregates corresponding to any possible time path of the policy instrument.

The identification result. We can now state our main identification result. We note

that the first part of Proposition 1—the identification argument for unconditional business

cycles—is already contained in McKay and Wolf (Appendix A.5, 2023), while the arguments

for the conditional episodes are new to the present paper.

Proposition 1. Suppose that the SVMA(∞) process (1) is invertible; i.e., that

εt ∈ span({yτ}−∞<τ≤t) (10)

Then knowledge of: (i) the Wold representation yt (i.e., the history of innovations {ut−ℓ}∞ℓ=0

together with Ψ(L)); and (ii) policy causal effects Θν suffices to construct all policy counter-

factuals of interest—Γ̃y(ℓ), ỹt, and Et [ỹt+h].

Before providing the formal proof, we find it useful to first discuss the high-level intuition

underlying this identification result. For this we will proceed in two steps, first assuming that

the researcher could actually observe all of the primitive structural shocks εt (rather than

just yt and the associated Wold representation). In that case, it is immediate that she could

recover the impulse responses to those shocks under the baseline policy rule, Θ(L). She could

then leverage the results of McKay and Wolf (2023): since she knows how any possible time

path of the policy instrument z affects macroeconomic outcomes (i.e., Θν), she can predict

how those observed shocks εt would have counterfactually propagated under the alternative

rule (5)—i.e., she has obtained Θ̃(L), thereby the counterfactual SVMA representation (6),

and thus the desired policy counterfactuals.

The identification result then goes one step further and states that, under the additional

assumption of invertibility (i.e., under condition (10)), directly observing the true shocks εt

is actually not necessary—it suffices to just observe the reduced-form Wold innovations ut.

The reason for this is simply that our counterfactuals of interest are just forecasts—and by

invertibility, forecasts with respect to the econometrician’s information set equal forecasts

with respect to the full history of structural shocks εt. Since (counterfactual) forecasts based
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on a one-to-one function of the true shocks equal forecasts based on the shocks themselves,

the researcher is able to recover the correct counterfactuals.10

Proof. Consider using the policy transmission map Θν to predict the counterfactual propa-

gation of the Wold innovations ut under the counterfactual policy rule (5), proceeding as in

McKay and Wolf (2023, Proposition 1). Formally, for j ∈ {1, . . . , ny}, let Ψ•,j be the impulse

response of yt to the j-th Wold innovation uj,t, and then construct the counterfactual impulse

responses Ψ̃•,j as

Ψ̃•,j = Ψ•,j +Θνν̃ννj,

where the artificial policy shocks ν̃ννj solve the system of equations

Ãx (Ψ•,x,j +Θx,νν̃ννj) + Ãz (Ψ•,z,j +Θz,νν̃ννj) = 000. (11)

Combining the Ψ̃•,j’s for all j, we get the counterfactual process

ỹt =
∞∑
ℓ=0

Ψ̃ℓut−ℓ. (12)

Under invertibility, the Wold innovations ut and true structural shocks εt are related as

ut = Pεt,

where P is an orthogonal matrix. It then again follows from McKay and Wolf (2023) that

the counterfactual Wold lag polynomial Ψ̃(L) satisfies

Ψ̃(L) = Θ̃(L)P ′. (13)

We now recover each of the desired counterfactuals.

1. Consider using the counterfactual process (12) to recover the desired counterfactual

second-moment properties. Its implied autocovariance function is

∞∑
m=0

Ψ̃mΨ̃
′
m+ℓ =

∞∑
m=0

Θ̃mP
′P Θ̃′

m+ℓ =
∞∑
m=0

Θ̃mΘ̃
′
m+ℓ = Γ̃y(ℓ),

10Note that these are rational, full-information forecasts. As discussed in Appendix A.1, our identification
results are consistent with various kinds of frictions in expectation formation; however, the forecasts that
the econometrician leveraging Proposition 1 constructs still always need to be full-information forecasts.
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where the first equality uses (13), and the second follows since P is an orthogonal matrix.

2. Applying Proposition 1 of McKay and Wolf (2023) to the system (8) - (9) that defines

initial conditions ỹyy∗, we see that we can recover initial conditions at t∗ as

ỹyy∗ = yyy∗ +Θνν̃νν
∗, (14)

where the artificial policy shocks ν̃νν∗ now solve

Ãx (xxx
∗ +Θx,νν̃νν

∗) + Ãz (zzz
∗ +Θz,νν̃νν

∗) = 000. (15)

Note that our informational requirements (i) - (ii) suffice to construct ν̃νν∗ and thus allow us

to also evaluate the initial conditions term ỹyy∗. In particular, invertibility here is crucial to

ensure that xxx∗ and zzz∗ are equal to date-t∗ − 1 forecasts based on the Wold representation

(4), given as y∗t∗+h =
∑∞

ℓ=1 Ψh+ℓut∗−ℓ. We can now recover the two counterfactuals.

(i) Consider using (12) and (14) to recover the conditional forecast Et [ỹt+h]. We have

Ψ̃hut∗ + ỹ∗t∗+h = Ψ̃hP︸︷︷︸
=Θ̃h

εt∗ + ỹ∗t∗+h = Et∗ [ỹt∗+h] .

(ii) Consider using (12) and (14) to recover the historical counterfactual ỹt. We have

t−t1∑
ℓ=0

Ψ̃ℓut−ℓ + ỹ1t =

t−t1∑
ℓ=0

Ψ̃ℓP︸︷︷︸
=Θ̃ℓ

εt−ℓ + ỹ1t = ỹt.

2.4 More on the invertibility assumption

Our discussion following Proposition 1 explained the role of invertibility in terms of forecast-

ing. In this section we will use model-based simulations to show that, even when invertibility

fails, we can still obtain accurate counterfactuals as long as we have forecasts that are rea-

sonably accurate vis-à-vis the full-information benchmark.

Experiment. We consider a structural model—the medium-scale DSGE model of Smets

and Wouters (2007)—as an artificial laboratory. In this environment we seek to recover the
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counterfactual second moments of output, inflation, and interest rates under an alternative

monetary policy rule that puts a larger weight on output stabilization. To do so, we leverage

Proposition 1, using the true matrix of policy shock causal effects Θν , but then relying on

information sets {yt−ℓ}∞ℓ=0 that are (potentially) insufficient to deliver invertibility.11 When

invertibility fails, then this procedure will not recover the true counterfactual; our question

is just how inaccurate those predictions will end up being. For our explorations we will

consider four information sets: interest rates, output, and inflation alone (“baseline”); the

baseline plus hours worked; the baseline plus investment and consumption; and finally the

baseline plus hours worked, wages, investment as well as consumption. Among those four

information sets, only the fourth one satisfies invertibility.

The remainder of this section presents the main results of this exercise. Further imple-

mentation details are relegated to Appendix A.3.

Results. Our key finding—revealed in Figure 1—is that even small information sets can

deliver predicted policy counterfactuals that are almost indistinguishable from the true ones.

The top panel summarizes second moments via spectral densities over business-cycle frequen-

cies, with the pink lines corresponding to the prevailing monetary policy rule, while the other

lines indicate the true (solid) and predicted (dashed) counterfactual spectral densities. As

expected, the predicted counterfactual based on the full information set is equal to the truth.

More importantly, for all information sets, the predicted counterfactuals are close to each

other, and so to the truth. In other words, though invertibility fails, implementing the steps

of Proposition 1 yields predictions close to the true counterfactual.

The explanation for this finding lies in our discussion of the role of invertibility above—its

key purpose being to deliver full-information forecasts. The bottom panel of Figure 1 makes

this point by showing residual forecast uncertainty for interest rates, output, and inflation

at different horizons (x-axis), and for our different information sets (different lines); for

that panel, we have normalized the residual forecast uncertainty under the full information

set to 1 at each horizon h. As h → ∞, the residual forecast variances for all information

sets of course limit to the same number—the unconditional variance. For intermediate h,

forecasting uncertainty is instead strictly larger for smaller information sets. The differences,

however, are moderate, with forecast variances that are only at most around 10 per cent larger

11To be precise, given Θν and the Wold representation of the observables yt, we mechanically follow the
same steps outlined in the constructive proof of Proposition 1. We then report the second moments implied
by the constructed counterfactual Wold representation Ψ̃(L).
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Approximate and exact counterfactuals

Relative Residual Forecast Uncertainty

Figure 1: Top panel: business-cycle spectral densities for interest rates, output, and inflation under
the old rule (solid pink) and under the counterfactual rule, true (solid dark blue) and predicted
using Proposition 1 for different information sets (solid-dashed blue, dashed orange, dotted red,
solid-dashed cyan). We normalize the peak spectral density to 1. Bottom panel: residual forecast
variances for the same variables and for the same information sets, as a function of the forecast
horizon (x-axis), and relative to the forecast variance for the full information set.

than with the full information set. Even the small information sets thus deliver accurate

forecasts, and thus accurate counterfactuals.12 In other words, the key requirement is to

have forecasts of output, inflation, and nominal interest rates that approach the accuracy of

the full-information benchmark—and for that, the past history of those three series evidently

suffices, at least in the model of Smets and Wouters.

12This discussion suggests that, analogous to the SVAR literature, our results are continuous in the degree
of invertibility (e.g., see Sims, 2012). Appendix A.2 confirms this, with the relevant measure now the R2

in a population regression of full-information forecasts on the information set {yt−ℓ}∞ℓ=0. We also note that
invertibility is testable when at least some shocks are observed; see Plagborg-Møller and Wolf (2022).
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3 Policy counterfactuals via VAR-Plus

By Section 2, constructing policy counterfactuals requires two inputs: (i) reduced-form pro-

jections with respect to a large information set, and (ii) policy shock dynamic causal effects.

We now introduce our VAR-Plus approach for constructing those inputs. We present the

method in Sections 3.1 to 3.3, and then discuss its properties in Section 3.4.

3.1 Reduced-form projections

As the first step in our methodology, the researcher selects a set of macroeconomic observables

yt and then estimates their Wold representation (4)—i.e., she recovers the orthogonalized

Wold innovations ut and the lag polynomial Ψ(L). In principle there are many ways of doing

so. One particularly simple and convenient alternative is to estimate a VAR(p) in yt:

yt =

p∑
ℓ=1

Aℓyt−ℓ + u†t (16)

The orthogonalizedWold innovations ut are then equal to chol(Σu)
−1u†t (where Σu = Var(u†t)),

and the Wold lag polynomial Ψ(L) is given as (I − A(L))−1 chol(Σu). This is the first half

of the VAR step of our proposed methodology.

In practice, the vector of observables yt should be chosen to be large enough—and contain

enough forward-looking variables—so that the invertibility assumption is plausible. More

practically, by the discussion in Section 2.4, this means that, if the researcher is interested in

counterfactuals for some set of macroeconomic outcomes y†t , then the vector of observables

yt should include y†t together with other series that are useful for forecasting y†t .

3.2 Policy causal effects

We next require the policy causal effects Θν . For this we will proceed in two sub-steps. First,

we use semi-structural time-series methods to get empirical evidence at least on parts of Θν ,

completing the VAR step of our methodology. Second, we use additional structure—in the

form of one or multiple models of policy transmission—to first match and then extrapolate

beyond that evidence, giving the rest of Θν , i.e., the Plus part of our approach.

Empirical evidence on Θν. In the first sub-step, the researcher uses the standard time-

series toolkit—typically in the form of a Structural Vector Autoregression (SVAR) or Local
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Projection (LP)—to estimate the causal effects of a list of nν distinct policy shocks. For

example, for monetary policy applications, she may estimate the causal effects of short-lived

and more persistent innovations to the federal funds rate, following identification strategies

as in Romer and Romer (2004) or Gertler and Karadi (2015). We then stack those estimated

impulse responses of nm targeted outcome variables over H impulse response horizons to the

nν identified shocks in the nν × nm ×H vector θ̂ν .

Under standard asymptotic sampling theory, the asymptotic distribution of the policy

shock causal effect vector θ̂ν satisfies (e.g., see Christiano et al., 2010)

θ̂ν
a∼ N(θν , Vθν ).

Our methodology requires the researcher to have an at least approximately consistent estima-

tor of the asymptotic covariance matrix Vθν . We discuss standard options and our preferred

approach for doing so in Appendix B.2.

Taken together, these reduced-form projection and policy shock estimation exercises con-

clude the VAR step of the proposed methodology. As we will discuss in Section 3.4 and then

showcase through our applications in Section 5, this step often already suffices to largely pin

down the policy counterfactual of interest.

Impulse response extrapolation. The Plus step begins with the researcher writing

down a listM of structural models of policy transmission, denoted byMj for j = 1, 2, . . . ,M .

In the notation of Section 2.1, a “model” is a tuple {Hw,Hx,Hz}—i.e., a set of private-sector

relations, but without structural shocks to those relations {Hee0}, nor a policy rule {Ax,Az}.
Each model then has a parameter vector ψj mapping into {Hw,Hx,Hz}, a prior distribution

p(ψj | Mj) for the model parameters, and a prior probability p(Mj). We write θν(ψj,Mj)

as the model-implied analogue of the empirically observed policy shock causal effect vector;

briefly, this object is defined as the impulse responses to a change in policy that comes as

close as possible to the empirical targets. A discussion of how to construct this object for

any given structural model is provided in Appendix B.3.13

Each model Mj among the list of contemplated models is estimated through standard

impulse-response matching techniques (Rotemberg and Woodford, 1997; Christiano et al.,

2005, 2010). Cast as a standard limited-information Bayesian estimation strategy, we can

13In the standard impulse response-matching literature, the researcher writes down a policy rule, and then
restricts attention to contemporaneous shocks to that rule. We instead find the best fit to the empirical
targets within the overall space implementable by policy, allowing us to not need to commit to any rule.
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define an approximate likelihood of the “data,” θ̂ν , as a function of ψj given Mj:

p(θ̂ν | ψj,Mj) ∝ exp

[
−0.5

(
θ̂ν − θν(ψj,Mj)

)′
V −1
θν

(
θ̂ν − θν(ψj,Mj)

)]
. (17)

Combining the prior together with the likelihood (17), we obtain the posterior for ψj condi-

tional on model Mj and given the policy shock causal effect data θ̂ν :

p(ψj | θ̂ν ,Mj) =
p(θ̂ν | ψj,Mj)p(ψj | Mj)

p(θ̂ν | Mj)
,

and where

p(θ̂ν | Mj) =

∫
p(θ̂ν | ψj,Mj)p(ψj | Mj)dψj

is the marginal density of θ̂ν given model Mj. Computation of these objects is standard,

relying on the usual random walk Metropolis-Hastings algorithm both to draw from the

posterior distribution and to compute the marginal likelihood. See Appendix B.3.

The final step is to recover posterior model probabilities—i.e., the posterior distribution

across the model space M. We have

p(Mj | θ̂ν) =
p(θ̂ν | Mj)p(Mj)∑M
i=1 p(θ̂ν | Mi)p(Mi)

. (18)

The researcher has thus arrived at a posterior distribution over models and parameter

vectors, p(ψj,Mj | θ̂ν). Each parameterized model implies a policy transmission map

Θν = Θν(ψj,Mj).

We have thus arrived at a posterior distribution over the causal effects of policy on macroe-

conomic aggregates Θν , p(Θν), concluding the Plus step. By construction, this distribution

is consistent with the empirical evidence from the VAR step, and then extrapolates beyond

it according to the structure embedded in the contemplated structural models.14

3.3 Constructing policy counterfactuals

It now remains to put together the estimated inputs—i.e., reduced-form Wold innovations

and projection coefficients {ut,Ψ(L)} as well as policy shock causal effects Θν—to construct

14Strictly speaking, these statements presuppose that at least one of the contemplated models can match
the targeted empirical evidence θ̂ν well. In our empirical applications we will make sure that this is the case.
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the various policy counterfactuals of interest. The formulas for mapping {ut,Ψ(L)} together

with Θν into our three desired counterfactuals are provided in the proof of the identification

result in Proposition 1; see Section 2.3.

An important practical implementation challenge is how to take into account estimation

uncertainty for the inputs {ut,Ψ(L),Θν}. For this we propose to proceed as follows. First,

for the reduced-form inputs {ut,Ψ(L)}, we simply look at point estimates. This is in keeping

with standard practice in the policy counterfactual literature, which tends to take as given

point estimates for the baseline second moments and forecasts (e.g., Rotemberg and Wood-

ford, 1997; Eberly et al., 2020). Second, given those point estimates, we construct the policy

counterfactuals by drawing Θν from the posterior distribution estimated in our second step.

Given the point estimates of {ut,Ψ(L)}, the posterior distribution over Θν thus maps into

a posterior distribution over the counterfactuals {Γ̃(ℓ),Et [ỹt+h] , ỹt}.

3.4 Why this approach?

Our approach contributes to the recent literature on policy evaluation with less reliance on

explicit model structure (Barnichon and Mesters, 2023; McKay and Wolf, 2023). As such, its

chief appeal relative to the still dominant “quantitative DSGE” approach (e.g., as in Smets

and Wouters, 2007; Justiniano et al., 2010) lies in its greater robustness to plausible model

mis-specification. These robustness gains are best understood in two steps.

1. The VAR step may well suffice. To evaluate any given policy counterfactual question, the

VAR step—which delivers Wold impulse responses as well as the causal effects θ̂ν of some

policy shocks—may already suffice. Intuitively, a given counterfactual of interest may only

involve a transitory (say) change in policy, and such transitory changes may well already

be spanned by the empirical evidence.15 If that is so, then the output of our approach is

actually robust to arbitrary forms of model mis-specification within the general linearized

environment (2) - (3) that underlies our theoretical identification result. Our applications

in Section 5 will reveal that this case is actually quite plausible in practice.

2. Assumptions on primitive underlying shocks are never needed. If additional model struc-

ture is needed—i.e., the “Plus” step—then it is exclusively for the purpose of extrapolat-

ing policy causal effects; in particular, the researcher need never say anything about the

15More formally, using just the empirically estimated policy shock causal effects θ̂ν (rather than the full
matrix Θν), it may already be possible to enforce the counterfactual policy rule of interest to a high degree
of accuracy, i.e., nearly solve equation (11) or (15).
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stochastic shocks driving the macro-economy. This means that our approach sidesteps

one of the literature’s central concerns with the standard DSGE paradigm: likely mis-

specification of the model’s shock processes. In general, in large-scale quantitative models,

it is not clear where exactly the driving shocks should enter, how many there should be,

and what stochastic processes they should follow. This potential mis-specification is prob-

lematic for at least two reasons: first, mis-specified shocks are not plausibly structural,

and so they may well invalidate policy counterfactual analysis, e.g., as argued forcefully

by Chari et al. (2009); and second, mis-specification in the exogenous driving forces of the

model will also necessarily threaten inference on the endogenous propagation mechanism

(e.g., see Christiano et al., 2010; Fernández-Villaverde et al., 2016). In our approach all

of these concerns are entirely moot, for a simple reason: for counterfactual policy evalua-

tion, all that matters are the reduced-form projections that are generated by the unknown

shocks, and those projections can actually be taken directly from data.16

We provide some further discussion—that furthermore touches on some related concerns

about weak identification—in Appendix B.4.

4 Inputs for monetary policy counterfactuals

We now showcase our methodology with several monetary policy applications. We begin in

this section with the required inputs, following the general discussion in Sections 3.1 and 3.2.

4.1 Reduced-form projections

In Section 5 we will seek to evaluate the counterfactual evolution of the output gap, infla-

tion, and nominal interest rates under alternative assumptions on the systematic conduct of

monetary policy. Consistent with our discussion in Section 3.1, we here begin by estimating

a relatively large-dimensional reduced-form VAR that contains these three core observables,

as well as other aggregates that are useful to predict them. We only sketch the procedure

here, with implementation details relegated to Appendix C.1.

For our estimated reduced-form VAR we consider a set of 10 macroeconomic variables,

as in Angeletos et al. (2020). Differently from those authors, however, we will transform all

16A secondary, related benefit of our proposed approach is that the researcher does not need to specify the
prevailing policy rule. In practice, it is unlikely that historical policy conduct can actually be reduced to any
simple rule, and so the policy rule block of DSGE models is also likely to be mis-specified. Misspecification
of policy rules has however attracted less attention in the literature, so our discussion emphasizes it less.
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of the included variables to stationarity (if necessary), as in Hamilton (2018); in particular,

we treat the detrended real output series as a measure of the output gap. Our sample period

stretches from 1960:Q1 – 2019:Q4—a long post-war, pre-covid sample. For our covid inflation

counterfactual application (in Section 5.4) we then further extend that sample to the chosen

forecast date (2021:Q2). In Appendix C.1 we document that the forecasts implied by our

reduced-form VAR are competitive with other forecasting strategies.

4.2 Monetary policy shock evidence

We continue with the second part of the VAR step—evidence on the effects of monetary policy

shocks on our three main outcomes of interest. Our construction of the empirical targets θ̂ν of

monetary policy transmission follows recent advances in the empirical time-series monetary

policy shock literature. Specifically, we identify a monetary policy shock series following

Aruoba and Drechsel (2022), who extend the classic Romer and Romer (2004) analysis to

allow for a larger policymaker information set. We then study the dynamic causal effects of

this monetary policy shock series on the output gap as well as on inflation and on the federal

funds rate. The vector θ̂ν stacks impulse responses of these three variables for the first five

years after the policy shock. We only provide a visual display of the main results here, with

implementation details provided in Appendix C.2.

Results are reported as the grey lines (medians) and light grey areas (confidence bands)

in Figure 2 (on p.26). The estimated effects of monetary shocks look largely as in prior work:

a transitory rate hike leads to a gradual and moderately persistent fall in output, as well

as a more delayed fall in prices. Together, the results of Sections 4.1 and 4.2 complete the

VAR step of our approach: we have now recovered (i) the required reduced-form projections

and (ii) empirical evidence on the propagation of one type of monetary shock—a transitory

nominal rate change. Those inputs will turn out to largely govern the results in our first two

applications in Sections 5.2 and 5.3; the remainder of this section discusses the Plus step,

which will be key for the third application, in Section 5.4.

4.3 Models of monetary policy transmission

For our Plus step—matching and extrapolating beyond the evidence θ̂ν of Section 4.2—we

consider several standard models of monetary policy transmission. Our first model is a stan-

dard representative-agent model with nominal rigidities (“RANK”), augmented with several

other frictions to allow a quantitative fit to our empirical VAR evidence, following Christiano
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et al. (2005). Our second model then enriches the consumer block to feature heterogeneous

households with uninsurable income risk, e.g., as in Kaplan et al. (2018) (“HANK”). Those

first two models arguably capture the dominant approaches to quantitative business-cycle

modeling of the past two decades. Finally, we will also consider behavioral variants of these

models, with price- and wage-setters forming expectations with cognitive discounting, as in

Gabaix (2020). We will see that such behavioral frictions can matter greatly for policy dy-

namic causal effect extrapolation at intermediate and long horizons, and that this can have

material implications for policy counterfactual evaluation. Zooming out, in the notation of

our general framework of Section 2.1, this section introduces the model relations that deliver

the private-sector—or, more accurately, non-monetary-policy—block {Hw,Hx,Hz}.
The remainder of this section proceeds as follows. We will first sketch the representative-

agent, rational-expectations model. We then explain how the heterogeneous-agent and be-

havioral models depart from this benchmark. Throughout we will only provide brief verbal

descriptions, with details in Appendix C.3. We do so because all the models we consider are

standard; our contribution is instead in how we use these models for the Plus step.

Baseline RANK model. Our first model is a standard quantitative business-cycle model,

as familiar from the “medium-scale DSGE” tradition, and in particular rich enough to al-

low us to match the empirical monetary policy shock evidence documented in Section 4.2.

Following Christiano et al., the model features capital accumulation subject to investment

adjustment costs and with variable capacity utilization, nominal rigidities (with indexation)

in price- and wage-setting, and habit formation in consumer preferences. We now provide a

brief sketch of each of the constituent model blocks.

• Households & unions. The economy is populated by a representative household with

separable preferences for consumption and leisure, and allowing for habit formation.

This agent chooses paths for consumption and assets to maximize lifetime utility. Labor

supply is intermediated by labor unions (as in Erceg et al., 2000), with households

taking hours worked as given when solving their consumption-savings problem. The

unions face Calvo-style frictions in adjusting their wages, with full indexation to lagged

price inflation (as in Christiano et al., 2005).

• Production. There is a unit continuum of perfectly competitive intermediate goods

producers. They produce using capital and labor, and with a variable rate of capital

capacity utilization; they sell their good to retailers who costlessly differentiate it, and
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set prices subject to Calvo frictions. Prices that are not re-optimized are fully indexed

to lagged inflation (as in Christiano et al., 2005). The intermediate goods producers

purchase capital goods from competitive capital goods producers. Those capital goods

producers purchase the final good, turn it into the capital good subject to adjustment

costs on their level of investment, and sell the capital good.

• Policy. There is a monetary and a fiscal authority. The fiscal authority issues nominal

bonds with exponential maturity structure, spends a constant amount in real terms,

and then adjusts labor taxes gradually to maintain long-run budget balance. In the

representative-agent economy described here, this fiscal rule has real effects through

the distortionary effects of taxes on labor supply. In the heterogeneous-agent economy

sketched below, it also matters by affecting the timing of household income.

The monetary authority sets nominal interest rates. Importantly, for our purposes—

i.e., estimating the model to match θ̂ν and then extrapolating to all of Θν—we need

not specify any particular monetary policy rule, as discussed above.

Stacking all model blocks except the behavior of the monetary authority, we obtain

{Hw,Hx,Hz}—i.e., the first model block (2).17 Solving the system for every possible path of

monetary policy shocks and thus nominal rates, we obtain the linear map of monetary policy

causal effects, Θν . We estimate the model to ensure consistency between Θν and the empirical

monetary policy shock targets θ̂ν ; to do so we rely on a standard Bayesian implementation

of impulse response-matching, with details on the set of estimated parameters and on the

choice of priors provided in Appendix C.4.

HANK model. Our second model is a heterogeneous-agent (“HANK”) model. It differs

from the representative-agent baseline in that the representative consumer is replaced by a

unit continuum of households subject to uninsurable idiosyncratic income risk and borrowing

constraints (e.g., Kaplan et al., 2018), delivering elevated average marginal propensities to

consume (MPCs). To ensure consistency with the empirically observed gradual response of

output to changes in monetary policy, we furthermore assume that households are inattentive

to macroeconomic conditions, as in Auclert et al. (2020). Unlike habits, this modeling choice

delivers sluggish responses to changing aggregates while still maintaining large MPCs out of

transitory income changes. The remainder of the model is unchanged.

17This in particular means that the fiscal rule is contained in the “non-policy” block (2). Our counterfac-
tuals thus keep the fiscal rule fixed, and only change assumptions on monetary policy conduct.
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Cognitive discounting. Standard New Keynesian models, including the representative-

and heterogeneous-agent variants presented so far, imply that inflation is strongly forward-

looking. This model feature implies that small changes in future monetary policy can have

large and immediate effects on inflation. The literature on the forward guidance puzzle (e.g.,

Del Negro et al., 2023) has questioned this feature of standard models.

For our final set of model variants, we will consider versions of our representative- and

heterogeneous-agent baselines in which price- and wage-setting becomes less forward-looking;

specifically, we follow Gabaix (2020) in assuming that agents engage in cognitive discounting.

According to this view, agents do not trust that they understand the structure of the economy

and thus shrink their expectation of future outcomes towards the economy’s steady state. In

particular, an innovation occurring s periods in the future is down-weighed by a factor ms,

wherem ∈ [0, 1] controls the strength of cognitive discounting, and withm = 1 corresponding

to the rational-expectations benchmark. Our behavioral models will featurem = 0.65, at the

lower end of the range considered by Gabaix; we make this choice (rather than estimating

m) because, as we will see, our targeted monetary policy shock causal effects are only weakly

informative about m.

4.4 Estimation results and policy extrapolation

We now use the empirical targets of Section 4.2 together with the four models of Section 4.3

to implement our Plus step, assuming a uniform prior across models. We first present

results of the impulse response matching exercise—i.e., the ability of our models to match

the targets, and the resulting posterior distribution across models. We then discuss how the

different models extrapolate from the matched transitory policy shock causal effects to more

persistent policy changes.

Model estimation via impulse response matching. We begin in Figure 2 by show-

ing the monetary policy shock estimation targets (grey) and as well as the matched impulses

at the posterior mode for each of our four models (beige and red, solid and dashed); the full

posterior distributions for the estimated parameters are presented in Appendix C.4. We see

that all of the models are able to match the empirical targets quite well: a transitory hike in

nominal interest rates leads to a hump-shaped decline in output as well as a delayed decline

in inflation. This similar fit suggests that the data do not strongly distinguish between our

four models; this visual impression is confirmed in Table 4.1, which shows posterior proba-

bilities across models, computed following (18). We see that, for all four models, posterior
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Figure 2: The grey line and shaded areas indicate the estimated impulse responses for a monetary
policy shock (see Section 4.2), and their respective 16th and 84th percentile confidence bands. The
remaining lines indicate the model-implied impulse responses at the estimated posterior modes.
Beige: representative-agent consumer block. Red: heterogeneous-agent consumer block. Solid: no
cognitive discounting. Dotted: cognitive discounting with m = 0.65.

probabilities have not moved particularly far from the uniform-prior starting point.18

Model Baseline Cognitive discounting Total

RANK 0.4189 0.2435 0.6624
HANK 0.2183 0.1192 0.3376

Total 0.6372 0.3628 1.0000

Table 4.1: Posterior probabilities across the four models, assuming a uniform prior. The posterior
model probabilities are computed as in (18).

Monetary policy shock extrapolation. Having estimated our models to match the

empirical targets θ̂ν , we can now finally ask how the various estimated models extrapolate

beyond the evidence on transitory interest rate changes to complete the full set of policy

causal effects Θν . We will proceed in two steps: first comparing the baseline representative-

and heterogeneous-agent models, and then asking how cognitive discounting changes things.

Results here are displayed in Figures 3 and 4, which show impulse responses to forward

18The analysis in Bundick and Smith (2020) as well as our results in Figures 3 and 4 suggest that empirical
evidence on relatively near-term forward guidance would similarly be insufficient to discriminate between
the models considered here. Furthermore, in results not reported here, we have also found that the fit across
models is similar for the impulse responses of consumption and investment.
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2.5-Year-Ahead Forward Guidance

Figure 3: Policy causal effect extrapolation in our estimated RANK and HANK models. The
figure shows output and inflation impulse responses (left and middle) to a forward guidance policy
shock that leads to the interest rate movements depicted on the right. Beige: RANK model (solid
= median, shaded = 16th and 84th percentile confidence bands). Red: HANK model (median).

guidance shocks—i.e., nominal interest rate movements that are (much) more delayed than

our transitory targets θ̂ν .
19

• RANK vs. HANK. We consider a far-ahead (forward guidance) monetary policy in-

tervention: deviations from a standard monetary policy rule announced at t = 0 and

occurring ten quarters later. The right panel shows the response of nominal interest

rates, while the left and middle panels display the causal effects on output and inflation

in RANK (beige) and HANK (red) associated with those interest rate paths.

The main takeaway is that the two models, which closely agree on the effects of the

targeted interest rate path by construction, also approximately agree on the dynamic

causal effects of this much more delayed monetary intervention. In fact this is not

just the case for the particular rate paths shown in Figure 3; it holds robustly across

different possible paths, i.e., across the entirety of Θν .

• Baseline vs. cognitive discounting. Figure 4 repeats the same exercise, but now com-

paring the baseline (beige) and behavioral (blue) representative-agent models.20

We see that now there are more material differences across the two models. In par-

19Details on how we construct those particular delayed interest rate paths are provided in Appendix C.4.
20We use the term “behavioral” as shorthand for “with cognitive discounting.” The baseline HANK model

also has elements that could be considered behavioral (i.e., sticky information among consumers).
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2.5-Year-Ahead Forward Guidance

Figure 4: Policy causal effect extrapolation in our estimated RANK and B-RANK models. The
figure shows output and inflation impulse responses (left and middle) to a forward guidance policy
shock that leads to the interest rate movements depicted on the right. Beige: RANK model (solid
= median, shaded = 16th and 84th percentile confidence bands). Blue: B-RANK model (median).

ticular, and as expected given the additional cognitive discounting, we see that the

inflation responses in the behavioral model are more delayed. While Figure 4 shows

this for the representative-agent models, we note that the same is also true for the

heterogeneous-agent models.

Takeaways. In this section we have completed our Plus step—i.e., we have used structural

models to match and then extrapolate beyond the empirical VAR evidence on monetary

policy transmission, delivering a distribution over policy causal effects, Θν . With an eye

towards our applications in Section 5 we emphasize the following three takeaways.

1. By construction, the overall policy shock causal effects Θν agree with the targeted empir-

ical VAR evidence θ̂ν . Thus, as discussed in Section 3, counterfactuals that can (approxi-

mately) be enforced through those policy shock causal effects alone will be semi-structural;

the Plus step discussed here is not needed in those cases.

2. Representative- and heterogeneous-agent models, once estimated to match the same em-

pirical evidence on the effects of transitory interest rate changes, extrapolate very similarly

to persistent rate changes. Thus, by our results in Section 2.3, it follows immediately that

our two estimated RANK and HANK models of monetary policy transmission will imply

very similar monetary policy counterfactuals in all possible applications.
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3. Rational and behavioral models extrapolate quite differently to more persistent interest

rate changes, with the inflation response in the former much more forward-looking. Thus,

for counterfactuals involving such persistent monetary interventions, we expect the “Plus”

step to matter greatly, and our method to indicate large posterior uncertainty.

The first takeaway will loom large in our first two applications in Sections 5.2 and 5.3,

while the second and third play an important role for the last one, in Section 5.4.

5 Applications to monetary policy counterfactuals

We begin in Section 5.1 by describing our counterfactual assumptions on monetary policy

design. In Sections 5.2 to 5.4 we evaluate how such alternative policy design would have

shaped the average business cycle as well as two particular historical episodes.

5.1 The counterfactual policy experiment

For all three applications we will consider as our counterfactual monetary policy rule the one

that minimizes the following standard “dual mandate” objective:21

L = E0

[
∞∑
t=0

βt
{
λππ

2
t + λyy

2
t + λi(it − it−1)

2
}]

. (19)

This counterfactual is supposed to give us a reasonable approximation to the strategy of

flexible inflation targeting, as discussed in Woodford (2003). Consistent with the discussion

in the Federal Reserve Tealbook (2016), we consider an equal-weights parameterization, with

λπ = λy = λi = 1 (and no discounting, i.e., β = 1).

5.2 Average business cycle

For our first application we ask how the average U.S. post-war business cycle would have

differed had the Federal Reserve (always) followed the flexible inflation targeting monetary

policy rule (19). We communicate our main results by reporting the counterfactual volatilities

of the output gap, inflation, and nominal interest rates.

21That is, given any matrix of monetary policy causal effects Θν , we set the counterfactual policy rule
coefficients {Ãx, Ãz} exactly as in Proposition 2 of McKay and Wolf (2023).
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Figure 5: Counterfactual unconditional volatilities of inflation, output, and the federal funds
rate, under the policy rule that minimizes (19). Black dashed: data point estimate under observed
policy. Blue: posterior Kernel density of counterfactual volatilities drawing from posterior across all
models and parameters. Beige: posterior mode of counterfactual using RANK models (baseline and
behavioral). Red: posterior mode of counterfactual using HANK models (baseline and behavioral).

Main results. Results are reported in Figure 5. That figure shows actual (black) as well

as counterfactual (colored) volatilities of inflation, the output gap, and the federal funds rate.

The black-dashed lines are constructed by translating the estimated reduced-form VAR into

its implied Wold representation, and then from there computing the three volatilities. To

construct the counterfactual, we draw from the posterior over Θν . For each draw, we then

compute the volatilities under the counterfactual policy, following Proposition 1; finally, we

construct a smoothed Kernel density estimate of the resulting posterior distribution. The

colored vertical lines show the counterfactuals at the posterior modes of our four models.

The key finding is that the counterfactual policy could have actually achieved materially

lower output gap volatilities and slightly more stable inflation, at the cost of only moderately

more volatile nominal interest rates.22 This finding is furthermore chiefly driven by our VAR

evidence, and not by the causal effect extrapolation in the Plus step. To show this, we in

Appendix D.1 repeat our analysis using only the empirically estimated policy causal effects θ̂ν

(rather than the entire model-implied matrix Θν). That exercise yields the same qualitative

patterns, with output gap volatility still dropping materially (if less than documented here),

while inflation and interest rate volatilities do not change much. Another way of seeing the

same result is to note that, in Figure 5, the beige and red, solid and dashed lines—i.e., the

counterfactuals at the posterior modes of our four models—are all very close. The displayed

22Note that this volatility reduction does not just reflect infeasible rate cuts during the period of a binding
lower bound on nominal interest rates; see Appendix D.1 for pre-2007 results.
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Figure 6: Counterfactual impulse responses of inflation, output, and the federal funds rate to the
main business-cycle shock (see Angeletos et al., 2020), under the policy rule that minimizes (19).
Black dashed: data point estimate under observed policy. Blue: posterior median (solid) and 16th
and 84th percentile bands (shaded).

posterior uncertainty in Figure 5 (in light blue) thus chiefly reflects uncertainty about the

causal effects of transitory interest rate changes, rather than any across-model uncertainty

in how to extrapolate those policy causal effects.

Inspecting the mechanism. To see more clearly where those results are coming from, we

study the counterfactual propagation of the combination of Wold residuals that “explains”

the largest share of unemployment volatility at business-cycle frequencies—i.e., the “main

business-cycle shock” of Angeletos et al. (2020). The black-dashed lines in Figure 6 show the

propagation of this shock under the in-sample monetary reaction: inflation drops just a little,

output drops materially, and monetary policy somewhat leans against this contraction. Our

contemplated counterfactual policy leans against this shock much more, stabilizing output

at the cost of moderately higher inflation and larger nominal interest rate movements.

The takeaway from Figure 6 is thus that our headline conclusions in Figure 5 are essen-

tially driven by two moments of the data: first, that large output movements are associated

with moderate inflation movements and partial interest rate offset; and second, that interest

rate cuts boost output, with only little effect on inflation. Combining those two empirical

moments—which are already well-documented from much prior work (notably Ramey, 2016;

Angeletos et al., 2020)—with our identification results in Section 2 immediately delivers the

conclusions in Figure 5; in other words, and as claimed, the key for everything reported here

is the VAR step, with little incremental role for the Plus extrapolation.
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Figure 7: Counterfactual evolution of inflation, output, and the federal funds rate in the Great
Recession, under the policy rule that minimizes (19) without any effective lower bound on rates.
Black: data. Blue: posterior median (solid) and 16th and 84th percentile bands (shaded).

5.3 Great Recession

For our second application we evaluate how the economy would have evolved during the Great

Recession if monetary policy had followed the inflation targeting framework described above,

and without any effective lower bound on nominal interest rates.23 Specifically, we will assume

that the central bank follows this alternative, unconstrained rule from 2008:Q4 onwards,

and does so throughout 2012:Q1—an example of a “historical evolution” counterfactual. A

counterfactual of this sort is informative about the plausible costs of a binding lower bound

constraint. Results are reported in Figure 7.

We see that, absent any effective binding lower bound on nominal interest rates, a policy

that follows the rule of minimizing (19) would have involved a very aggressive rate cut, down

to around -4 per cent. Such (infeasible) rate cuts would have materially reduced the output

gap, at the cost of moderately elevated inflation. As in Section 5.2, and for the same reasons

as discussed there, this counterfactual is almost exclusively governed by our VAR evidence

(and not by the Plus extrapolation, see Appendix D.2); in particular, and again as before,

the uncertainty displayed in Figure 7 chiefly reflects uncertainty about the causal effects of

transitory rate changes, and not extrapolation uncertainty across models.

Our results are informative about the broader policy response to the Great Recession.

Given constraints on nominal interest rates, policymakers attempted to substitute through

23We note that our methodology remains applicable to model environments with a linear non-policy block
(2) and a non-linear policy rule, allowing for a binding lower bound on nominal interest rates. The argument
is analogous to that in Appendix A.9 of McKay and Wolf (2023).
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other stimulative measures, notably unconventional monetary policy as well as fiscal stim-

ulus. If we interpret (19) as the objective for monetary policy, our counterfactual suggests

that the unconventional monetary policy response was insufficient—in nominal interest rate

space, additional stimulus of around 400 basis points would have been necessary.

5.4 Post-covid inflation

As the third and final application of our methodology, we evaluate monetary policy options at

the height of the post-covid inflation. Using our estimated reduced-form VAR, we construct

forecasts of inflation, the output gap, as well as the federal funds rate from 2021:Q2 onwards.

We then apply our methodology to construct the forecast under the policy that minimizes

the dual-mandate inflation targeting objective (19).

Main results. Figure 8 shows the historical evolution of inflation, the output gap, and the

federal funds rate (black), their baseline forecasts from 2021:Q2 onwards (grey-dashed), and

their counterfactual forecasts (blue). The panels distinguish the models used to extrapolate

policy causal effects: the two rational-expectations models (top), the two behavioral models

(middle), and the full set (bottom). We can see that, under the baseline forecast, inflation is

expected to be persistently elevated, the output gap is slightly negative, and nominal interest

rates rise sharply. Our focus is now on how the inflation targeting monetary policy moves

the economy away from these baseline forecasts.

Consider first the top panel of Figure 8, which shows counterfactuals constructed with

policy extrapolation via our rational-expectations models. We see that policy succeeds in

reducing inflation sharply with only a small reduction in output. Furthermore, and coun-

terintuitively, a lower interest rate path achieves this disinflation. This result reflects the

extremely forward-looking nature of the model: the policymaker achieves low inflation in the

short-run via negative output gaps in the far-future, implemented through future increases

in real rates; in fact, small future output gaps move current inflation so much that lower

short-term real rates can actually be used to stabilize output in the short run. The beige

lines in Figure 9 illustrate this intuition: real rates initially decline and only later rise (left

panel); short-run inflation is much more sensitive to real rates in the far-future than to real

rates today (middle panel); combining the two, it follows that near-term disinflation can be

achieved through moderate medium- and long-term real rate hikes (right panel).

Consider next the middle panel of Figure 8, which constructs our policy counterfactuals

using instead the behavioral models to extrapolate policy causal effects. The counterfactual
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Rational-Expectations Models

Behavioral Models

All Models

Figure 8: Counterfactual projections of inflation, output, and the federal funds rate in the post-
covid inflationary episode (from 2021:Q2), under the policy rule that minimizes (19). Policy causal
effects from rational-expectations models (top), behavioral models (middle), and all models jointly
(bottom). Black: data. Grey: actual (VAR-implied) forecast. Blue: posterior median (solid) and
16th and 84th percentile bands (shaded).
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Figure 9: Behavior of real interest rates under the counterfactual monetary policy. Left panel:
difference between the counterfactual and the forecast real interest rate path. Middle panel: change
in inflation at 2022:Q2 in response to a policy-induced real interest rate change by horizon of the
rate change, as indicated on the x-axis. Right panel: contribution of real interest rate changes
at different horizons to the change in inflation at 2022:Q2. Beige: posterior mode of the baseline
RANK model. Blue: posterior mode of the behavioral RANK model.

looks quite different: the federal funds rate is hiked somewhat more aggressively than in

the baseline forecast, thus bringing inflation down slightly, though at the cost of moderately

lower output. Intuitively, the policymaker now cannot rely on very far-ahead real interest rate

movements to stabilize inflation in the short run. Instead, she faces an undesirable short-run

trade-off between output and inflation, and chooses to respond to it through higher short-

term real rates. A visual illustration is provided with the blue lines in Figure 9: real interest

rates rise immediately (left panel); short-run inflation is not nearly as sensitive to long-run

real rate fluctuations (middle panel); as a result, the short-term inflation reduction largely

reflects short-term real rate movements.

Finally, the bottom panel of Figure 8 puts everything together, showing counterfactuals

with policy causal effects extrapolated from our full set of four models. The main message of

the figure is the very large uncertainty about the response of interest rates. The four models

are similar in their abilities to fit our estimation targets—i.e., the effects of a transitory mon-

etary shock—yet they differ in their predictions for the effects of far-ahead rate changes. As

this counterfactual features persistent interest rate changes, the disagreement across models

translates to considerable uncertainty regarding the desired path of output and inflation.

Discussion. Figure 8 connects closely with the “forward guidance puzzle” literature (e.g.,

see Del Negro et al., 2023; Carlstrom et al., 2015; McKay et al., 2016). Our results demon-

strate that the model pathologies uncovered in that literature matter even away from any
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binding lower bound—they will apply whenever the economy is persistently away from its

steady state. As shown in Section 4.4, the available empirical evidence on transitory changes

in monetary policy does not discriminate between models with dramatically different causal

effects of persistent policy changes; as a result, for monetary policy counterfactuals involving

persistent interest rate changes, our method will invariably indicate large posterior policy

counterfactual uncertainty.

This discussion suggests that, for the purposes of counterfactual policy evaluation, there

will be high returns to future empirical work on the causal effects of persistent changes in

monetary policy. Failing that, relying on other pieces of evidence to discriminate across the

kinds of models considered here should prove useful. In particular, our results indicate that

researchers should aim to distinguish between models with and without behavioral frictions;

on the other hand, market incompleteness—the focus of the recent “HANK” literature—

seems less central for the purpose of monetary policy causal effect extrapolation.

6 Conclusions

The main contribution of this paper is to propose a new “VAR-Plus” approach to evaluating

the counterfactual evolution of the macro-economy under alternative assumptions on policy

design. Leveraging a theoretical identification result, our method relies on reduced-form or

semi-structural empirical evidence as much as possible (VAR), and then complements that

evidence with additional structural assumptions whenever necessary (Plus). This approach is

widely applicable, yet appealingly robust: if empirical evidence already suffices to pin down

the counterfactual, then our approach is in fact semi-structural; and even if the evidence does

not suffice, the only role of structure is to extrapolate the effects of policy shocks, with no

need to develop a complete account of the origins of business-cycle fluctuations. As a result,

our approach can sidestep many of the literature’s concerns with the dominant “quantitative

DSGE” approach to policy evaluation (as, e.g., articulated in Chari et al., 2009).

Our analysis suggests at least three avenues for future work. First, empirically, there are

very high returns to analyses identifying the causal effects of persistent changes in monetary

policy—i.e., the causal effects of forward guidance-type policies. Second, theoretically, it

would be useful to gain a more complete understanding of the range of models that can be

consistent with the available evidence on monetary policy propagation, and then of how they

differ in extrapolating beyond that evidence. Third, it would be interesting to go beyond

monetary policy and instead apply our insights to fiscal questions.
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“Solution and estimation methods for DSGE models,” in Handbook of macroeconomics,

Elsevier, vol. 2, 527–724.

Frisch, R. (1933): “Propagation problems and impulse problems in dynamic economics,”

Essays in Honor of Gustav Cassel.

Gabaix, X. (2020): “A behavioral New Keynesian model,” American Economic Review,

110, 2271–2327.

Gertler, M. and P. Karadi (2015): “Monetary policy surprises, credit costs, and eco-

nomic activity,” American Economic Journal: Macroeconomics, 7, 44–76.

Geweke, J. (1999): “Using simulation methods for bayesian econometric models: inference,

development,and communication,” Econometric Reviews, 18, 1–73.

Hamilton, J. D. (2018): “Why You Should Never Use the Hodrick-Prescott Filter,” The

Review of Economics and Statistics, 100, 831–843.

Hebden, J. and F. Winkler (2021): “Impulse-Based Computation of Policy Counterfac-

tuals,” FEDS Working Paper.

Justiniano, A., G. E. Primiceri, and A. Tambalotti (2010): “Investment shocks

and business cycles,” Journal of Monetary Economics, 57, 132–145.

Känzig, D. R. (2021): “The macroeconomic effects of oil supply news: Evidence from

OPEC announcements,” American Economic Review, 111, 1092–1125.

Kaplan, G., B. Moll, and G. L. Violante (2018): “Monetary policy according to

HANK,” American Economic Review, 108, 697–743.

Kilian, L. and H. Lütkepohl (2017): Structural vector autoregressive analysis, Cam-

bridge University Press.

Li, D., M. Plagborg-Møller, and C. K. Wolf (2023): “Local projections vs. VARs:

Lessons from Thousands of DGPs,” Working Paper.

Lucas, Robert E., J. (1972): “Expectations and the Neutrality of Money,” Journal of

Economic Theory, 4, 103–124.

39



Lucas, R. (1976): “Econometric policy evaluation: A critique,” in Carnegie-Rochester

Conference Series on Public Policy, Elsevier, vol. 1, 19–46.

McKay, A., E. Nakamura, and J. Steinsson (2016): “The power of forward guidance

revisited,” American Economic Review, 106, 3133–3158.

McKay, A. and C. Wolf (2022): “Optimal policy rules in hank,” Tech. rep., Working

Paper, FRB Minneapolis.

McKay, A. and C. K. Wolf (2023): “What Can Time-Series Regressions Tell Us About

Policy Counterfactuals?” Working Paper.

Molavi, P. (2019): “Macroeconomics with learning and misspecification: A general theory

and applications,” Unpublished manuscript.

Montiel Olea, J. L., M. Plagborg-Møller, E. Qian, and C. K. Wolf (2024):

“Double Robustness of Local Projections and Some Unpleasant VARithmetic,” Tech. rep.,

National Bureau of Economic Research.

Plagborg-Møller, M. and C. K. Wolf (2021): “Local projections and VARs estimate

the same impulse responses,” Econometrica, 89, 955–980.

——— (2022): “Instrumental variable identification of dynamic variance decompositions,”

Journal of Political Economy, 130, 2164–2202.

Ramey, V. A. (2016): “Macroeconomic shocks and their propagation,” Handbook of

macroeconomics, 2, 71–162.

Romer, C. D. and D. H. Romer (2004): “A new measure of monetary shocks: Derivation

and implications,” American Economic Review, 94, 1055–1084.

Rotemberg, J. J. and M. Woodford (1997): “An optimization-based econometric

framework for the evaluation of monetary policy,” NBER macroeconomics annual, 12,

297–346.

Sims, C. A. (1980): “Macroeconomics and reality,” Econometrica: journal of the Econo-

metric Society, 1–48.

Sims, C. A. and T. Zha (1995): “Does monetary policy generate recessions?” Working

Paper.

40



Sims, E. R. (2012): “News, non-invertibility, and structural VARs,” in DSGE Models in

Macroeconomics: Estimation, Evaluation, and New Developments, Emerald Group Pub-

lishing Limited, 81–135.

Smets, F. and R. Wouters (2007): “Shocks and frictions in US business cycles: A

Bayesian DSGE approach,” American economic review, 97, 586–606.

Stock, J. H. and M. W. Watson (2016): “Dynamic factor models, factor-augmented vec-

tor autoregressions, and structural vector autoregressions in macroeconomics,” in Hand-

book of macroeconomics, Elsevier, vol. 2, 415–525.

Svensson, L. E. (1997): “Inflation forecast targeting: Implementing and monitoring infla-

tion targets,” European economic review, 41, 1111–1146.

Wolf, C. K. (2020): “Svar (mis) identification and the real effects of monetary policy

shocks,” American Economic Journal: Macroeconomics, 12, 1–32.

——— (2023): “The missing intercept: A demand equivalence approach,” Tech. rep., Na-

tional Bureau of Economic Research.

Woodford, M. (2003): Interest and prices: Foundations of a theory of monetary policy,

Princeton University Press.

41



Online Appendix for:

Evaluating Policy Counterfactuals:

A VAR-Plus Approach

This appendix contains supplemental material for the article “Evaluating Policy Counterfac-

tuals: A “VAR-Plus” Approach.” We here provide: (i) some additional theoretical results to

complement the discussion in Section 2; (ii) practical implementation details for our method

as described in Section 3; (iii) further information on our “VAR-Plus” inputs for the mone-

tary policy applications as discussed in Section 4; and (iv) supplementary application results

to complement Section 5.

Any references to equations, figures, tables, assumptions, propositions, lemmas,

or sections that are not preceded by “A.”—“D.” refer to the main article.
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A Supplementary theoretical results

This appendix provides several supplementary theoretical results. Appendix A.1 discusses

how our identification result applies in environments with behavioral frictions. Appendix A.2

elaborates on the role played by invertibility. Finally Appendix A.3 gives further details for

our illustrative example based on Smets and Wouters (2007).

A.1 Behavioral models

In this subsection we discuss to what extent our theoretical identification results are con-

sistent with deviations from the usual full-information, rational-expectations (FIRE) bench-

mark. We first clarify what kinds of behavioral frictions are admissable (and which are not),

and then explain why, to implement our methodology, researchers still always need to try to

construct full-information forecasts, consistent with our main-text discussion.

Nested behavioral models. Every structural environment that can be written in the

general form (2) - (3) is consistent with our identification results. Importantly, this contains

models with behavioral frictions in which the deviation from FIRE is independent of the

policy rule, in the sense that the behavioral friction is encoded in Hw,Hx,Hz,He, and does

not change as the policy rule changes.

More formally, begin by considering a model with FIRE, and consider the ith equation

in its non-policy block, written as

HR
i,wwww +HR

i,xxxx+HR
i,zzzz +HR

i,ee0 = 000. (A.1)

A typical example of such a block would be the aggregate consumption function, mapping

sequences of household income and asset returns into a path of consumption. Our theory

is consistent with behavioral frictions in which the model equation (A.1) is replaced by an

alternative of the form

HB
i,wwww +HB

i,xxxx+HB
i,zzzz +HB

i,ee0 = 000. (A.2)

where the matrices HB
i,• are a policy rule-invariant transformation of HR

i,•:

HB
i,•(θ) = f(HR

i,•, θ),

with the parameter vector θ governing the behavioral friction. Examples of behavioral fric-

44



tions that can be written in this general way include sticky information, sticky expectations,

cognitive discounting, level-k thinking, and diagnostic expectations; see Auclert et al. (2021)

for further details. Crucially, in all of these cases, agent behavior continues to be shaped

by policy only through the current and expected future (full-information) paths of {www,xxx,zzz},
and so our identification results continue to apply.24

Implications for forecasting. The previous discussion reveals that, even if the un-

derlying data-generating process features behavioral frictions (of the sort consistent with our

identification result, of course), the forecasts that appear in (2) - (3) and thus our identifica-

tion results are full-information forecasts. It follows that, when leveraging our “VAR-Plus”

approach, researchers should aim to construct such full-information forecasts, and then note

that their reported counterfactuals will be valid across a wide range of models with and

without underlying behavioral frictions.

A.2 More on the role of invertibility

We begin by establishing, consistent with the intuition given throughout Section 2, that the

sole purpose of invertibility is to generate full-information forecasts. Afterwards we provide

some further discussion of what happens in the absence of invertibility.

Invertibility and forecasts. We provide a constructive argument showing that access

to full-information forecasts is sufficient to recover our counterfactuals. For this it will prove

convenient to reverse the order relative to the arguments in Proposition 1, beginning instead

with counterfactuals for conditional episodes.

2. Conditional episodes.

(i) Conditional forecasts. Recall that we need to construct ỹ∗t∗+h and Θ̃hεt∗ . Given the

full-information forecasts Et∗−1[yt+h], ỹ
∗
t∗+h can be constructed from Θν exactly

as in the proof of Proposition 1. Next note that Θhεt∗ can be recovered as the

revision in full-information forecasts

Θhεt∗ = (Et∗ − Et∗−1)[yt∗+h].

24A simple example that violates this restriction is the misspecified learning model of Molavi (2019). Here,
a change in policy rule affects agent learning and thus alters the response to any given set of (full-information)
expected future time paths, breaking the policy rule independence that we require. Mathematically, this is
isomorphic to how incomplete information as in Lucas (1972) breaks our identification results.
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We can then just as before use Θν to turn those expectation revisions into Θ̃hεt∗ ,

completing the argument.

(ii) Historical evolution. We now need to construct ỹ1t as well
∑t−t1

ℓ=0 Θ̃ℓεt−ℓ. As in

the previous item, ỹ1t can still be computed directly from date-t1 − 1 forecasts,

as in the proof of Proposition 1. Next, for date t1, we obtain Θhεt1 from forecast

revisions as (Et1 −Et1−1)[yt1+h], and then use Θν to get the counterfactual Θ̃hεt1 ,

thus in particular giving ỹt1 = Θ̃0εt1 + ỹ1t . Proceeding recursively, we for time ť

obtain forecast revisions to get Θhεť, and so as usual via Θν recover Θ̃hεť. From

here we then get the date-ť realized counterfactual outcome as

ỹť = Θ̃0εť +

ť−t1∑
ℓ=1

Θ̃ℓεť−ℓ + ỹ1t︸ ︷︷ ︸
from previous steps

,

completing the argument.

1. Unconditional business cycles. Proposition 1 presupposes knowledge of the auto-

covariance function of the observables yt or, equivalently, access to an arbitrarily large

sample of observations {yt}∞t=0. By the discussion in the previous item, knowledge of

full-information forecasts suffices to instead construct an arbitrarily large counterfac-

tual sample {ỹt}∞t=0, thus delivering the counterfactual autocovariance function Γ̃(ℓ).

From this discussion it follows that, conditional on full-information forecasts being ob-

servable, invertibility ceases to be necessary. Our empirical implementation of the VAR step

is designed with this observation in mind.

Proposition 1 without invertibility. Without invertibility, the orthogonalized reduced-

form residuals ut satisfy (e.g., see Wolf, 2020)

ut = P (L)εt.

The Wold lag polynomial Ψ(L) then satisfies

Ψ(L)P (L) = Θ(L),
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Using that P (L)P ∗(L−1) = I, it then follows from the arguments in McKay and Wolf (2023)

that the artificial Wold lag polynomial Ψ̃(L) constructed in our proof of Proposition 1 satisfies

Ψ̃(L) = Θ̃(L)P ∗(L−1).

Proceeding from here, however, the proof strategy of Proposition 1 now fails, as it is generally

the case that P ∗(L−1)P (L) ̸= I.

The results in Section 2.4 furthermore reveal that it is not just our particular proof strat-

egy that fails here—without invertibility, Wold-implied forecasts are generally not equal to

full-information forecasts, and so the derived counterfactuals do not equal the truth (though

they may be close, of course). Mathematically, the problem is that, while the true lag poly-

nomial Θ(L) and the Wold lag polynomial Ψ(L) generate the same autocovariance function,

nothing guarantees that the counterfactual lag polynomials Θ̃(L) and Ψ̃(L) will also generate

the same second moments. It is only the assumption of invertibility—which ties the impulse

responses in the lag polynomials Θ(L) and Ψ(L) together in a particular way—that allows

this argument to go through.

A.3 Counterfactual analysis in Smets and Wouters (2007)

Our laboratory data-generating process for the illustrations in Section 2.4 is the well-known

model of Smets and Wouters, but with one minor change—we assume that the monetary

authority follows rules of the form

it = ρiit−1 + (1− ρi) (ϕππt + ϕyyt) , (A.3)

which is slightly simpler than the headline specification considered by Smets and Wouters.

Specifically, we assume that the researcher observes data generated from the posterior

mode parameterization of the Smets and Wouters model, but with the monetary policy rule

taking the particular form (A.3) with ϕπ = 1.5 and ρi = ϕy = 0. She then wishes to predict

the counterfactual second-moment properties of interest if instead the monetary authority

followed the rule (A.3) but with ρi = 0.8, ϕπ = 1.5 and ϕy = 0.5. We have chosen these two

particular policy rules because they imply quite starkly different second-moment properties,

with the first one aggressively stabilizing inflation, while the second one smoothes interest

rates and also stabilizes output. This allows us to most transparently illustrate our results

about counterfactual accuracy under non-invertibility, as displayed in Figure 1.
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B Further details for our method

This appendix provides supplementary details for our proposed methodology. Appendix B.1

discusses estimation of reduced-form projections, Appendix B.2 elaborates on how to obtain

the (asymptotic) distribution of the policy shock targets θ̂ν , and Appendix B.3 gives further

details on the model estimation (i.e., “Plus”) step. Finally, in Appendix B.4, we provide an

extended discussion of well-documented vulnerabilities of the conventional DSGE approach.

B.1 Reduced-form projections

Our approach begins with estimation of the reduced-form VAR in (16). A textbook discussion

of how to estimate reduced-form VARs and translate the autoregressive lag polynomial A(L)

into the implied Wold lag polynomial Ψ(L) is provided, for example, in Kilian and Lütkepohl

(2017). Appendix C.1 discusses the concrete implementation in our application, including

details on data, lag length selection, and variable transformations.

B.2 Impulse response target estimation

Consistent with the recommendations of Plagborg-Møller and Wolf (2021) and Li et al.

(2023), the researcher first uses a structural VAR to estimate the causal effects of policy

shocks, identified using one (or several) of the usual semi-structural time series identification

approaches. We propose to estimate this VAR using standard Bayesian techniques, delivering

draws i = 1, 2, . . . , N of the policy shock causal effect vector θ̂i,ν .

We obtain θ̂ν as the posterior mode of the estimated policy shock causal effects. For Vθν

we proceed as follows. We construct

V̄θν ≡
N∑
i=1

(
θ̂i,ν − θ̂ν

)(
θ̂i,ν − θ̂ν

)′
.

Since the small-sample properties of estimating Vθν in this way are poor, we instead work

with a sample size-dependent transformation of V̄θν , following Christiano et al. (2010):

Vθν = f(V̄θν , T )

where T is the sample size. The transformation f(•) has the following properties. First, Vθν

and V̄θν have the same diagonal entries. Second, for off-diagonal entries that correspond to
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the ℓth and jth lagged response of a common variable to a common shock, it scales down

the entry of V̄θν by (
1− |ℓ− j|

H̄T

)η1,T
, ℓ, j = 1, 2, . . . , H̄T (B.1)

where H̄T ≤ H and H̄T → H, η1,T → 0 as T → ∞. Third, for all other off-diagonal entries

corresponding ℓth and jth lagged responses, it scales down the entry of V̄θν by

ζT

(
1− |ℓ− j|

H̄T

)η2,T
, ℓ, j = 1, 2, . . . , H̄T (B.2)

where ζT → 1 and η2,T → 0 as T → ∞. Intuitively, this transformation dampens some (off-

diagonal) elements in V̄θν , with the dampening factor removed as the sample size increases.

Finally, all covariances that are further apart than H̄T periods are set to zero. One popular

approach—followed, for example, in Christiano et al. (2005)—is to set η1,T = ∞ and ζT = 0

(thus η2,T and H̄T are immaterial), so that Vθν is simply a diagonal matrix composed of the

diagonal components of V̄θν . The opposite extreme is to not dampen at all, setting Vθν = V̄θν .

In our applications we will follow an intermediate strategy. We set ζT = 1 in order to

treat autocorrelations and correlations across different variables equally; we furthermore use

a triangular kernel, so η1,T = η2,T = 1, and a bandwidth of H̄T = 8.25 We depart from the

standard diagonal weighting matrix because of the model selection step: using a diagonal

matrix would lead to artificially sharp model selection, since small differences in fit of different

models will lead to starkly different posterior odds. Accounting for the correlation patterns

present in the IRF estimates reflects the informativeness of the data more accurately.

B.3 Model estimation

We here provide further implementation details for the model estimation step. We proceed

in two steps. First, for a given model Mj and parameter vector ψj, we explain how to obtain

θν(ψj,Mj). This step is non-standard; in particular, we explain why we need not specify a

policy rule to do so. Second, we discuss how we draw from the posterior and estimate the

marginal likelihood. That step is instead entirely standard, so we will be brief.

Obtaining θν(ψj,Mj). In order to evaluate the likelihood, we first need to obtain θν(ψj,Mj).

We obtain it in the following way:

25We note that our results are robust to different choices of bandwidth or to the use of other kernels.
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1. Given (ψj,Mj), solve for impulse responses of the targeted outcome variables to policy

news shocks for all horizons, ννν. To do so we close the model with some determinacy-

inducing policy rule; as discussed in McKay and Wolf (2023), the choice of that baseline

rule is immaterial. Denote the (truncated) impulse response function matrices of in-

terest as Θxxxm,ννν(ψj,Mj) for variable xxxm. Stack all of those impulse response matrices

vertically in the same order as for θ̂ν , and denote the stacked matrix as Θννν(ψj,Mj).

This is a (nmT )× T matrix, where T is the truncation horizon.26

2. We then, for each of the nν empirically identified policy shocks, find the unique vector

of policy shocks in the model that matches the empirical impulse response targets as

well as possible. Formally, for each empirical target shock n = 1, . . . , nν , define a

T × 1 vector of news shocks ν̃ννn. Vertically stack all these vectors of policy news shocks

in the (nνT ) × 1 vector ν̃ = [ν̃νν ′1, . . . , ν̃νν
′
nν
]′. Define also for convenience the following

(nmT )× (nνT ) matrix: ΦΦΦ(ψj,Mj) = Inν ⊗Θννν(ψj,Mj) where Inν is an nν-dimensional

identity matrix. We then obtain the best-fit vector of news shocks ν̃∗ as

ν̃∗(ψj,Mj) = argmax
ν̃

p̃(θ̂ν , θ̃ν , Vθν )

s.t ν̃H+1:T,n = 0 for all 1, . . . , nν

θ̃ν = ΦΦΦ(ψj,Mj)ν̃

where p̃(θ̂ν , Vθν , θ̃ν) is the assumed density for “data” θ̂ν with mean θ̃ν and covariance

matrix Vθν , and ν̃H+1:T,n denotes elements H + 1, H + 2, . . . , T of vector ν̃ννn.
27 Given

that f is assumed to be the density of a multivariate normal and Vθν is taken as given,

the maximizer ν̃∗(ψj,Mj) can be found in closed form (since the maximization prob-

lem is a simple restricted linear quadratic problem).

In our empirical applications, we use only one identified monetary policy shock. To

gain further intuition it is instructive to analyze this one-shock case in more detail.

Take the top left H × H elements of each of the stacked impulse response matrices

Θxxxm,ννν(ψj,Mj), stack them vertically, and denote the resulting matrix by ΘH
ννν (ψj,Mj).

Replacing the multivariate normal density, transforming appropriately, and focusing

26We set a truncation horizon of T = 300. Our results are insensitive to that choice.
27We impose this constraint to avoid overfitting: in order to match the IRF up to horizon H, we can only

use the news shocks up to horizon H, and all other news shocks are set to zero.
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only on the first H news shocks (since all others are set to zero) the problem to be

solved can be written as:

ν̃∗1:H(ψj,Mj) = argmax
ν̃1:H

−1

2

(
θ̂ν −ΘH

ννν (ψj,Mj)ν̃1:H

)′
V −1
θν

(
θ̂ν −ΘH

ννν (ψj,Mj)ν̃1:H

)
It is straightforward to show that the solution in this case is given by:

ν̃∗1:H(ψj,Mj) =
(
ΘH
ννν (ψj,Mj)

′V −1
θν

ΘH
ννν (ψj,Mj)

)−1
(
ΘH
ννν (ψj,Mj)

′V −1
θν
θ̂ν

)
In words, we can find the best-fitting shock vector ν̃∗1:H through a “regression” of

the empirical target impulse responses on the space of impulse response sequences

implementable through policy.

3. With ν̃∗ at hand, compute the model-implied impulse response functions as θν(ψj,Mj) =

ΦΦΦ(ψj,Mj)ν̃
∗.

We note that this way of constructing the model-implied impulse responses θν(ψj,Mj)

differs from the standard approach of first (i) specifying a policy rule and then (ii) assuming

that the identified policy shock corresponds to a time-0 shock under that rule (e.g., as in

Christiano et al., 2005). For this approach to be valid, the assumed rule has to be correctly

specified. In contrast, our approach does not require assumptions about the policy rule—we

simply construct a sequence of contemporaneous and news policy shocks ν̃∗ that perturbs

the expected path of the policy instrument analogously to the empirically estimated policy

instrument impulse response.28

Posterior distribution & marginal likelihood. We use a standard Random Walk

Metropolis Hastings algorithm, with a multivariate normal for the proposal distribution. The

variance-covariance matrix is initially assumed to be equal to the prior variance-covariance

matrix, scaled by a constant c21.
29 We use the first Na draws to estimate the variance-

covariance matrix of the proposal distribution, updating the proposal variance-covariance

matrix to the observed variance-covariance matrix of parameters in the first Na draws (scaled

28This claim works exactly in population as T,H → ∞. However, due to the finite horizon of the impulse-
response matching, the baseline assumed rule may matter due to truncation. In the models we consider, the
matched impulse-response and inferred structural parameters are almost exactly the same under a variety
of parameters for the assumed determinacy-inducing rule, consistent with the exact population result.

29For our HANK models, we in this step use a standard deviation of 0.1 for the informational stickiness
parameter (instead of 0.2, see Table C.4), to avoid getting too many draws outside of the parameter support.
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by c22). Once updated, we sample another Nb+Nc draws, burn the first Nb and keep the last

Nc draws, which we use as our posterior distribution. We set Na = Nc = 100000, Nb = 50000,

c1 = 0.8 and c2 = 0.7 for all models. Our acceptance rates for all models considered range

between 20 and 30 percent.

In order to then implement our applications, we need to store the impulse response

matrices of the outcomes of interest with respect to the full sequence of news shocks. Given

that storing hundreds of thousands of draws of T × T matrices is very expensive in terms of

memory, we store only the Tu×Tu top left elements, for only a number of Nd draws. We set

Tu = 200 and Nd = 1000. Specifically, we store one draw out of each Nc/Nd = 100, to get

draws that are closer to uncorrelated. Finally, given those posterior draws, we estimate the

marginal likelihood using the harmonic mean estimator of Geweke (1999).30

B.4 Vulnerabilities of the quantitative DSGE approach

We here provide some further details supplementing the discussion in Section 3.4, elaborating

on some well-known vulnerabilities of the full-information quantitative DSGE approach.

Model mis-specification and inference. Under standard full-information approaches

to model estimation (like, e.g., Smets and Wouters, 2007), mis-specification in one part of

the model will affect inference for the other parts. The argument is straightforward, so our

discussion here will be brief; we will furthermore focus our discussion on mis-specification

in shock processes, as such mis-specification is particularly likely in practice (Chari et al.,

2009). Analogous arguments apply to mis-specification in policy rules.

Suppose the true data-generating process is

yt = Θ∗(L)ξt (B.3)

ξt = B∗(L)εt (B.4)

where εt ∼ N(0, I). Relative to (1), the system (B.3) - (B.4) is written to explicitly separate

the exogenous process (i.e., equation (B.4)) from the endogenous model propagation (i.e.,

equation (B.3)). For example, εt could be an innovation to total factor productivity, while

ξt is the exogenous TFP level itself. For future reference we define Ψ∗(L) = Θ∗(L)B∗(L).

30We set the truncation parameter such that we use only half of the sample. We use the full sample
consisting of Nc draws to estimate the marginal likelihoods.
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The researcher instead entertains models indexed by parameters ψ = (ψ′
1, ψ

′
2)

′:

yt = Θψ1(L)ξt (B.5)

ξt = Bψ2(L)εt (B.6)

where again εt ∼ N(0, I). We assume that there is no mis-specification in the endogenous

propagation part of the model: there is a (in fact unique) ψ∗
1 such that Θψ∗

1
(L) = Θ∗(L).

Shock propagation, however, is mis-specified; for example, the researcher may assume that

all shocks follow AR(1) processes, while in fact they follow richer ARMA(p,q) processes. For

future reference we again write Ψψ(L) = Θψ1(L)Bψ2(L).

Finally, to make our arguments as stark as possible, we suppose that there exists a unique

ψ† such that

Ψ∗(e−iω)Ψ∗(e−iω)′ = Ψψ†(e−iω)Ψψ†(e−iω)′ ∀ω ∈ [0, 2π].

Thus, when evaluated at ψ† (and only then), the two processes (B.3) - (B.4) and (B.5) -

(B.6) imply the exact same second moments, so conventional likelihood-based estimation

will asymptotically yield ψ = ψ†. But since B∗(L) ̸= Bψ†
2
(L), we will generically have

Θ∗(L) ̸= Θψ†
1
(L)—i.e., mis-specification in the endogenous shock propagation part, including

in particular the policy space Θν . Since our approach does not require the researcher to take

any stance on the shock process part B(L), it is by design robust to such concerns.

A concrete illustration of this abstract discussion is provided by the model of Smets and

Wouters. In that model, the exogenous shocks driving inflation already induce hump shapes

(they follow ARMA(1,1)’s), and so other shocks—like monetary shocks—induce much weaker

hump shapes than observed in the data; we thank Simon Gilchrist for making this point.

Weak identification. Standard full-information approaches to estimation of DSGE

models are also often subject to concerns of weak identification (e.g., see Fernández-Villaverde

et al., 2016). Our approach is arguably less subject to this concern, simply because it only re-

quires the researcher to partially specify the model, thus reducing the number of parameters

that need to be identified. We here provide a simple example illustration of this insight.

Consider the following two-variable, two-equation static model:

yt = −1

γ
it + σdε

d
t ,

it = ϕyyt + σmε
m
t ,
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where yt and it denote outcome variables (output and interest rates), and (εdt , ε
m
t ) are shocks.

Note that the solution is given as(
yt

it

)
=

1

1 + ϕy
γ

(
− 1
γ
σm σd

σm ϕyσd

)
︸ ︷︷ ︸

≡Θ

(
εmt

εdt

)

Consider first a researcher following our approach. The ratio of the impulse responses of

interest rates and output to a monetary policy shock εmt point-identifies γ, and so the space

of output and interest rate allocations implementable through policy, as required by our

identification result. Now consider instead identification based on second moments; i.e., we

seek to find a tuple {γ, ϕy, σd, σm} such that

Σ = Θ(γ, ϕy, σd, σm)Θ(γ, ϕy, σd, σm)
′

where Σ ≡ ΘΘ′ is the true variance-covariance matrix. It is straightforward to verify that

these moment conditions are insufficient to point-identify the model, and in particular do

not point-identify γ.31

31To see this, start with some arbitrary γ > 0. Note that

Var(it) + γ Cov(yt, it)

Var(yt) +
1
γ Cov(yt, it)

=
ϕ2
y + ϕyγ

1 +
ϕy

γ

Solve this equation for ϕy, recover σd from Var(it) + γ Cov(yt, it), and finally get σm from Var(it). The
resulting parameter vector leads the model to correctly match the desired Σ.
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C Monetary policy “VAR-Plus” inputs

This appendix complements the discussion in Section 4 on the “VAR-Plus” inputs for our

applications. First, in Appendix C.1, we begin with the reduced-form projections. Second,

in Appendix C.2, we then present additional details on our empirical monetary shock estima-

tion, completing the VAR step. Third, in Appendices C.3 and C.4, we provide the detailed

equations for our list of models M, and discuss their estimation.

C.1 Reduced-form projections

We provide supplementary details on how we construct our reduced-form projections. We

elaborate on data construction and econometric implementation, and also compare the im-

plied forecasts with other approaches.

Data. We consider the same ten observables yt as in Angeletos et al. (2020). The series are

constructed as follows. Unless indicated otherwise, each series is transformed to stationarity

following Hamilton (2018), and series names refer to FRED mnemonics.

• Unemployment rate. We take the series UNRATE from FRED. We do not transform this

series further.

• Output gap. We take log output per capita from FRED (A939RX0Q048SBEA). We in-

terpret the stationarity-transformed series as a measure of the output gap.

• Investment. We compute log investment per capita, where investment is defined as

the sum of durables and gross private domestic investment. We construct this series

as (PCDG+GPDI)*A939RX0Q048SBEA/GDP.

• Consumption. We compute log consumption per capita, where consumption is defined

as the sum of nondurables and services. We construct this series as (PCND+PCESV) *

A939RX0Q048SBEA/GDP.

• Hours. We compute log hours worked, where total hours worked are constructed as

PRS85006023 * CE16OV/CNP16OV.

• Utilization-adjusted TFP. We compute the cumulative sum of the series DTFPu, from

John Fernald’s webpage (https://www.johnfernald.net/TFP2023.03.07revision).
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• Labor productivity. We compute log labor productivity, where labor productivity is

obtained as OPHNFB.

• Labor share. We compute the log labor share, with PRS85006173 as the labor share.

• Inflation. We compute the log-differenced GDP deflator (GDPDEF), and then annualize,

without further transformations.

• Federal funds rate. We obtain the series FEDFUNDS, without further transformations.

All series are quarterly. For the applications in Sections 5.2 and 5.3, we consider samples

from 1960:Q1—2019:Q4. For the covid inflation counterfactual in Section 5.4, we extend the

sample to 2021:Q2, the contemplated forecasting date.

Econometric implementation. We restrict attention to OLS point estimates. We al-

ways include a constant and a linear time trend. For the second-moment counterfactual in

Section 5.2 we include four lags, to allow for an accurate fit of second moments. For the

forecast-based counterfactuals in Sections 5.3 and 5.4, we include two lags.

Comparison with alternative forecasts. We now perform two additional checks to

demonstrate the good forecasting performance of our reduced-form VAR: we (i) check that

the forecast accuracy is similar to that of the Survey of Professional Forecasters (SPF); and

(ii) show that our 10-variable system contains nearly all of the information in the eight busi-

ness cycle factors that Stock and Watson (2016) computed from a large set of macroeconomic

and financial variables.

1. Comparison with the SPF. We assess forecast accuracy starting in 1981:Q3 (when the

SPF forecast for the T-Bill rate becomes available) and ending in 2007:Q3 (before the

onset of the Great Recession and the ZLB period).32 Table C.1 shows the mean squared

errors of the one- and four-quarter-ahead forecasts from our VAR and from the SPF, for

our three main series of interest. Our VAR evidently performs well by this metric.

2. Information content of the Stock and Watson factors. Stock and Watson (2016) estimate

8 factors that drive the bulk of the variation in a database of 207 quarterly time series on

32In order to allow an apples-to-apples comparison with the SPF, we need to slightly modify our VAR.
Specifically, we use raw GDP data (not per capita) and the T-Bill rate in place of the federal funds rate, as
those are the variables that appear in the SPF. As in the baseline VAR analysis, we detrend all non-stationary
series, but to compare to the SPF we add the trends back to the VAR-implied forecasts.
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Variable 1-quarter ahead 4-quarter ahead
VAR SPF VAR SPF

GDP 0.569 0.327 2.76 2.97
Inflation 0.357 0.934 0.646 1.85
T-Bill rate 0.461 0.740 1.66 3.17

Table C.1: Mean squared error of 1- and 4-quarter ahead forecasts.

1-quarter ahead 4-quarter ahead
w/o f w/ f w/o f w/ f

Output gap 0.918 0.935 0.648 0.774
Inflation 0.826 0.838 0.717 0.732
Interest rate 0.945 0.953 0.759 0.781

Table C.2: Assessing the incremental information content of the Stock-Watson factors: forecasting
R2 with and without inclusion of factors in the VAR.

the U.S. macro-economy and financial markets. We now ask whether adding these factors

to the information set of our VAR would lead to a substantial improvement in forecasting

performance. Specifically, let the variables in our VAR be represented by the vector yt

and the 8 factors be represented by the vector ft. For horizon h ∈ {1, 4}, we consider a

regression of the form

yt+h = B0yt +B1yt−1 +Bfft,

and then assess the implications of setting Bf = 0. Table C.2 shows the results for our

core observables. We see that, with the exception of the 4-quarter-ahead forecast of the

output gap, the increase in R2 from including the factors is quite small. We thus judge

that including the Stock-Watson factors would not lead to materially different forecasts.

C.2 Empirical evidence on monetary shock propagation

We provide further details on how we construct our monetary shock estimation targets in

Section 4.2. We elaborate on data construction and econometric implementation.

Data. We are interested in impulse responses of three outcome variables: the output gap,

inflation, and the policy rate. All series are constructed as for the first part of the VAR step,

see Appendix C.1. Our measure of a monetary shock series is obtained from the replication
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files of Aruoba and Drechsel (2022). We aggregate by averaging the monthly series, and we

set all missing values of this monetary shock IV to zero, as in Känzig (2021).

Econometric implementation. We estimate a VAR in the shock series together with

our three outcome variables of interest, consistent with the recommendations of Li et al.

(2023). As in Plagborg-Møller and Wolf (2021), we order the shock series first in a recursive

identification of our VAR, delivering invertibility-robust estimates of the causal effects of the

monetary shock. We include two lags, a linear time trend, and use a uniform-normal-inverse-

Wishart distribution over the orthogonal reduced-form parameterization (Arias et al., 2018).

Our estimation results are robust to these particular choices. This procedure yields draws of

the policy shock causal effect vector θ̂ν , which are then used to construct Vθν following the

steps outlined in Appendix B.2.

C.3 Models of monetary policy transmission

This section provides some supplementary details for our structural models of monetary

policy transmission sketched in Section 4.3. We list all model equations; however, since the

models are relatively standard, the derivations will be rather brief. Throughout this section,

we use tildes to denote log-deviations from steady state.

C.3.1 Baseline RANK

Households & unions. Households choose sequences of consumption ct and assets aHt to

maximize lifetime utility, given by

E0

[
∞∑
t=0

βt [u (ct − hct−1)− v (ℓt)]

]
, (C.1)

subject to a standard no-Ponzi condition as well as the budget constraint

ct + aHt = wt(1− τ ℓt )ℓt + dHt − τt +
1 + rnt−1

1 + πt
aHt−1, (C.2)

where wt is the real wage, τ
ℓ
t is the labor tax rate, dHt is real dividend income, τt is a transfer,

rnt is the nominal interest rate, and πt is the price inflation rate. We assume that u(x) = x1−γ

1−γ
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and v(x) = ν x
1+φ

1+φ
. The Euler Equation in log-deviations from steady state is:

λ̃t = Et[r̃t+1 + λ̃t+1]

with r̃t+1 = r̃nt − πt+1,
Pt+1

Pt
= exp(πt+1), and

λ̃t = − 1

(1− βh)(1− h)
γ(c̃t − hc̃t−1) +

1

(1− βh)(1− h)
βhγ(Et [c̃t+1]− hc̃t).

A detailed derivation of the wage Phillips curve—which summarizes the labor supply block—

is deferred until Appendix C.3.3, given that the full information case is nested in the deriva-

tion that includes cognitive discounting.

Production and pricing. The production function for an intermediate good producer i is:

Yt(i) = Ā(ut(i)kt−1(i))
α(ℓt(i))

1−α

where Ā denotes aggregate productivity, kt−1(i) is capital stock of firm i, ut(i) is capacity

utilization, and ℓt(i) denotes labor hired. All intermediate good producers are symmetric

and so we drop the i subscript. Capital is purchased one period in advance. The intermediate

good producer solves:33

max
ℓt,kt,ut

E0

[
∞∑
t=0

(Πt
j=0(1 + rj))

−1[pItYt − wtℓt − a(ut)− qt(kt − (1− δ)kt−1)

]

where a(ut) is an utility cost of adjusting capacity, and qtkt is the total cost of capital

purchases for next period.34 The first-order conditions are:

wt = pIt (1− α)Ā

(
ℓt

utkt−1

)−α

a′(ut) = pItαĀ

(
ℓt

utkt−1

)1−α

qt = Et

(
1

1 + rt+1

[
pIt+1αĀ

(
ℓt+1

ut+1kt

)1−α

+ (1− δ)qt+1

])

33We discount future pay-offs using the real rate of interest. Up to first order, this is equivalent to using
the representative household’s implied stochastic discount factor.

34The cost is written in terms of utility, so it does not enter the market-clearing condition.
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Log-linearizing around the steady state:

ỹt = α(ũt + k̃t−1) + (1− α)ℓ̃t

w̃t = p̃It + α(ũt + k̃t−1)− αℓ̃t

ζũt = p̃It + (α− 1)(ũt + k̃t−1) + (1− α)ℓ̃t

q̃t = Et
[
−r̃t+1 +

(
1− 1− δ

1 + r̄

)
(p̃It+1 + (α− 1)(k̃t + ũt+1) + (1− α)ℓ̃t+1) +

1− δ

1 + r̄
q̃t+1

]
where ζ = a′′(1)/a′(1) is the curvature parameter of the capacity utilization cost function.

Following Smets and Wouters (2007), we parametrize ζ = ψ
1−ψ and then use the same prior

on ψ as in that paper.

Retail firms solve their dynamic pricing problem subject to Calvo frictions. Detailed

derivations are deferred until Appendix C.3.3.

Capital good producers solve

max
it

E0

[
∞∑
t=0

(Πt
j=0(1 + rj))

−1

(
qtit − S

(
it
it−1

))]
,

where it is the production of new capital goods (sold to the intermediate goods producers),

and S(x) is the adjustment cost function. The first-order condition is given by:

qt =
1

it−1

S ′
(

it
it−1

)
− Et

[
1

1 + rt+1

S ′
(
it+1

it

)
it+1

i2t

]
We assume that S(1) = S ′(1) = 0 and κ = S ′′(1) > 0. Log-linearizing around the steady

state yields:

qt = κ(̃it − ĩt−1)−
κ

1 + r̄
(̃it+1 − ĩt)

Finally, capital evolves according to kt = (1− δ)kt−1 + it or in log-linearized terms:

k̃t = (1− δ)k̃t−1 + δĩt

We note that therefore goods market-clearing implies that, to first order:

ỹt = c̄c̃t + ī̃it
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Policy. The government budget constraint is

wtℓtτ
ℓ
t + bt = (1 + rt)bt−1 + τt + gt

where rt is the real return on government debt bt, τt denotes lump-sum transfers, τ ℓt denotes

distortionary labor taxes, and gt denotes government expenditure. Log-linearizing:

w̄ℓ̄τ̄ ℓ(w̃t + ℓ̃t + τ̃ ℓt ) + b̄b̃t = (1 + r̄)b̄(b̃t−1 + r̃t) + τ̄ τ̃t + ḡg̃t

Second, the realized real return on government debt satisfies

1 + rt =
r̄ + η

exp(πt)

1

pt−1

+
1− η

exp(πt)

pt
pt−1

where pt is the real relative price of government debt and η is the decay rate of the coupon,

with η = 0 corresponding to perpetuities and η = 1 corresponding to one-period debt.

Log-linearizing:

r̃t = −πt − p̃t−1 +
1− δ

1 + r̄
p̃t

The central bank sets the nominal rate on one-period government debt, which is in zero net

supply. By perfect foresight arbitrage we have

1 + rt =
1 + rnt−1

exp(πt)
, t = 1, 2, . . .

and so, in log-deviations

r̃t = r̃nt−1 − πt, t = 1, 2, . . .

or

r̃nt = −p̃t +
1− η

1 + r̄
Et [p̃t+1]

It remains to determine how taxes are set. We assume:

τ̃t = g̃t = 0

w̄ℓ̄τ̃ ℓt = b̄τ ℓb b̃t−1

That is, all the adjustment is done via distortionary taxes. The resulting law of motion for

government debt is

b̃t = (1 + r̄ − τ̄ ℓτ ℓb )b̃t−1 + (1 + r̄)r̃t.

61



Policy rule for computation. For our numerical analysis, we close the model with a

determinacy-inducing Taylor rule, as discussed in Appendix B.3:

r̃nt = (1− ρ)
(
ρr̃nt−1 + ϕππt + ϕyỹt + ϕ∆y(ỹt − ỹt−1)

)
As emphasized throughout, our model estimation step and policy counterfactual applications

do not depend on this choice of basis rule, simply because we allow for arbitrarily general

policy shocks, allowing us to implement arbitrary paths of interest rates. For Figures 3 and 4,

we subject this rule to ten-quarter-ahead forward guidance shocks.

Steady state. We normalize the level of disutility of labor such that ℓ̄ = 1. Given that

assumption, the Euler equation pins down the real rate as 1 + r̄ = β−1. We can then find k̄,

which immediately yields ī, ȳ and w̄. We calibrate the level of outstanding government debt,

labor taxes and transfers (see Appendix C.4), and pick the steady state level of government

consumption such that the intertemporal government budget constraint holds.

C.3.2 Baseline HANK

The only two differences relative to the baseline RANK model are that: (i) we replace the

representative agent with a heterogeneous agents block, as already described in the main

text; (ii) we now need to specify how dividends are paid to the households.

Household and unions. Households are subject to idiosyncratic income risk (with the risk

process taken from Kaplan et al., 2018), and hours worked are intermediated by labor unions,

as in the baseline representative-agent model.35 Households save in government bonds, while

firm capital and equity is held by financial intermediaries; those intermediaries gradually pay

out dividends to households in proportion to their productivity. Letting 1 − θ denote the

probability that a household updates its information about aggregate conditions, and letting

s denote the number of periods since the last update, the consumption-savings problem can

be stated recursively as

Vt(a, e, s) = max
c,a′

{u(c)− v(ℓt) + βEt−s [θVt+1(a
′, e′, s+ 1) + (1− θ)Vt+1(a

′, e′, 0)]}

35We assume that unions evaluate the marginal utility of income using c−γ where c is aggregate con-
sumption. As the Phillips curves are then unchanged, this assumption limits the effects of inequality to the
demand side of the model (as in McKay and Wolf, 2022).

62



subject to the budget constraint

c+ a′ =
(
(1− τℓ,t)wtℓt + dHt

)
e+

1 + rnt−1

1 + πt
a+ τt

and the borrowing constraint a′ ≥ a, and where e denotes idiosyncratic household produc-

tivity. The borrowing constraint a is set as in Kaplan et al. (2018). In order to compute the

solution with informational rigidities, we follow Auclert et al. (2020): we first solve for the

Jacobians of the household block under full information, and then transform them to obtain

the solution under sticky information.

Dividend distribution. Households receive dividends through a financial intermediary. Let

aIt denote total assets held by the financial intermediary. Those assets evolve as

aIt = (1 + rt)a
I
t−1 + (dt − dHt )

where dt denotes dividends paid by firms to the intermediary and dHt denotes payments from

the intermediary to the households. We assume the following distribution rule:

(dHt − d̄) = δ1(dt − d̄) + δ2(1 + rt)a
I
t−1

Note that δ1 = 1 corresponds to the usual case of dividends paid out straight to households,

with aIt = 0 always. The linearized relations are

âIt = (1− δ2)(1 + r̄)âIt−1 + (1− δ1)d̄d̃t

and

d̄d̃Ht = δ1d̄d̃t + δ2(1 + r̄)ãIt−1

where x̂ = x− x̄. We linearize (instead of log-linearizing) with respect to aIt since ā
I = 0.

Steady state. We proceed exactly as in the RANK case. Given a calibrated real interest

rate, we pick β such that in equilibrium households want to hold the calibrated level of liquid

assets, which are given by the outstanding stock of government debt. Apart from the value

of β, the steady state is exactly the same as in the RANK case.

63



C.3.3 Adding cognitive discounting

This subsection derives the price- and wage-NKPCs under cognitive discounting and price

indexation. We derive the NPKCs under partial indexation and cognitive discounting, where

ζ and ζw are the degrees of price indexation; ζ = ζw = 1 corresponds to the case considered

in our main analysis.

Pricing. The problem of a retailer is to choose P ∗
t to maximize

Et
∞∑
τ≥t

(β̄θp)
τ−tMτ |t

(
Pτ |t
Pτ

− µτ

)(
Pτ |t
Pτ

)−ϵp
Yτ ,

where β̄ = 1
1+r̄

, Pτ |t is the price at date τ of a firm that last updated its price at t, µτ is

the real marginal cost of producing at τ , Pτ is the aggregate price index, Yτ is aggregate

demand, Mτ |t = uc(cτ )/uc(ct), and 1 − θp is the probability of resetting the price. Due to

price indexation, we have

Pτ |t = P ∗
t exp (ζ(πt + πt+1 + · · · πτ−1))︸ ︷︷ ︸

≡Iτ |t

.

The first-order condition of the price-setting problem is

(ϵp − 1)Et
∞∑
τ≥t

(β̄θp)
τ−tMτ |t

(
Pτ |t
Pτ

)−ϵp
Yτ
Iτ |t
Pτ

= ϵpEt
∞∑
τ≥t

(β̄θp)
τ−tMτ |tµτ

(
Pτ |t
Pτ

)−ϵp−1

Yτ
Iτ |t
Pτ

.

Log-linearizing both sides of this equation around a zero-inflation steady state we have

Et
∞∑
τ≥t

(β̄θp)
τ−t
[
µ̃τ − P̃τ |t + P̃τ

]
= 0

or

Et
∞∑
τ≥t

(β̄θp)
τ−t

[
µ̃τ − P̃ ∗

t −
τ∑

s=t+1

ζπs−1 + P̃τ

]
= 0

and so

P̃ ∗
t − P̃t = (1− β̄θp)Et

∞∑
τ≥t

(β̄θp)
τ−t

[
µ̃τ −

τ∑
s=t+1

ζπs−1 + P̃τ − P̃t

]
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or

P̃ ∗
t − P̃t = (1− β̄θp)Et

∞∑
τ≥t

(β̄θp)
τ−t

[
µ̃τ +

τ∑
s=t+1

(1− ζL)πs

]
where L is the lag operator. We now apply cognitive discounting (as in Gabaix, 2020):

P̃ ∗
t − P̃t = (1− β̄θp)

∞∑
τ≥t

(β̄θpm)τ−t

[
µ̃τ + Et

τ∑
s=t+1

(1− ζL)πs

]
(C.3)

where m is the cognitive discount factor.

The aggregate price index evolves as

Pt =
[
θp(Pt−1(exp(ζπt−1)))

1−ε + (1− θp)(P
∗
t )

1−ε]1/(1−ε)
Solving this for P ∗

t :

P ∗
t =

[
P 1−ε
t − θp(Pt−1(exp(ζπt−1))

1−ε

1− θp

]1/(1−ε)
Dividing by Pt:

P ∗
t

Pt
=

[
1− θp(exp(πt))

ε−1(exp(ζπt−1))
1−ε

1− θp

]1/(1−ε)
Re-arranging:

(1− θp)

(
P ∗
t

Pt

)1−ε

= 1− θp(exp(πt))
ε−1(exp(ζπt−1))

1−ε

Log-linearizing:

πt =
1− θp
θp

(
P̃ ∗
t − P̃t

)
+ ζπt−1

(1− ζL)πt =
1− θp
θp

(
P̃ ∗
t − P̃t

)
(C.4)

Combining (C.3) and (C.4) we arrive at

(1− ζL)πt =
(1− θp)(1− β̄θp)

θp
Et

∞∑
τ≥t

(β̄θpm)τ−t

[
µ̃τ +

τ∑
s=t+1

(1− ζL)πs

]
. (C.5)

Define π̌t = (1 − ζL)πt as the quasi-differenced rate of inflation. We can then rewrite the
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preceding equation as

π̌t =
(1− θp)(1− β̄θp)

θp
Et

[
∞∑
τ=t

(β̄θpm)τ−tµ̃τ +
1

1− β̄θpm

∞∑
τ=t+1

(β̄θpm)τ−tπ̌τ

]

or

π̌t =
(1− θp)(1− β̄θp)

θp︸ ︷︷ ︸
κp

Et

[
∞∑
τ=t

(β̄θpm)τ−t
(
µ̃τ +

π̌τ
1− β̄θpm

)
− π̌t

1− β̄θpm

]

and so

π̌t

[
1 +

κp
1− β̄θpm

]
= κp

[
∞∑
τ=t

(β̄θpm)τ−t
(
µ̃τ +

π̌τ
1− β̄θpm

)]
Differencing forward and re-arranging:[

1 +
κp

1− β̄θpm

] (
π̌t − β̄θpmEtπ̌t+1

)
= κp

(
µ̃t +

π̌t
1− β̄θpm

)
and so

π̌t = κpµ̃t + β̄θpm

[
1 +

κp
1− β̄θpm

]
Etπ̌t+1

Replacing the definition of π̃t and noting that µ̃t = p̃It yields the price-NKPC:

πt − πt−1 = κpp
I
t + βpEt [πt+1 − πt] (C.6)

Wage-setting. For tractability we assume that unions evaluate household utility at average

consumption and hours worked (rather than averaging across individual household utilities),

as in McKay and Wolf (2022). When a union does not update its wage, it adjusts it to

Wj,t = Wj,t−1(exp(ζwπt−1)), where πt is price inflation. We will use the notation

Wτ |t ≡ W ∗
t exp(ζw(πt + · · ·+ πτ−1)

for the nominal wage at date τ for a union that set its wage at date t. As before we derive

everything allowing for partial indexation, with our analysis in the main text corresponding

to the special case of full indexation (ζw = 1). Real earnings for union j are

Wτ |t

Pτ
ℓjτ =

(
Wτ |t

Pτ

)(
Wτ |t

Wτ

)−ϵw
Lτ =

(
Wτ

Pτ

)(
Wτ |t

Wτ

)1−ϵw
Lτ .
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Note that ℓj,t denotes hours worked for union j, ℓτ is total hours worked by the households,

and Lτ is the effective aggregate labor supply. Wage dispersion implies Lτ ≤ ℓτ ; however,

since we consider first-order approximations, we can proceed as if Lτ = ℓτ .

The union’s problem is to choose the nominal reset wage W ∗
t to maximize

Et
∑
τ≥t

(
β̄θw

)τ−t [
λt

(
Wτ

Pτ

)(
Wτ |t

Wτ

)1−ϵw
− νℓ (ℓτ )

(
Wτ |t

Wτ

)−ϵw
]
Lτ

where λt is the relevant aggregate marginal utility, and β̄ is the time discount factor used by

the union, assumed to equal the one used by the firm.36

The first-order condition is

Et
∑
τ≥t

(
β̄θw

)τ−t
νℓ (ℓτ ) ℓτ ϵwW

ϵw
τ

τ∏
s=t+1

exp(ζwπs−1)

= Et
∑
τ≥t

(
β̄θw

)τ−t
uc(cτ )(ϵw − 1)

Wτ |t

Pτ
W ϵw
τ ℓτ

τ∏
s=t+1

exp(ζwπs−1).

Log-linearizing the first-order condition around a zero-inflation steady state:

Et
∞∑
τ=t

(βθw)
τ−t
(
ϕℓ̃τ − W̃τ |t + p̃τ − λ̃τ

)
= 0

or

Et
∞∑
τ=t

(βθw)
τ−t

(
ϕℓ̃τ − W̃ ∗

t −
τ∑

s=t+1

ζwπs−1 + p̃τ − λ̃τ

)
= 0,

where ϕ ≡ νℓℓ(ℓ̄)ℓ̄

νℓ(ℓ̄)
. Re-arranging

W̃ ∗
t − W̃t = (1− β̄θw)Et

∑
τ≥t

(
β̄θw

)τ−t(
ϕℓ̃τ − λ̃τ −

τ∑
s=t+1

ζwπs−1 − W̃t + p̃τ

)

36In the case of RANK, λt is as discussed in Appendix C.3.1, and the firm and union discount factors are
always identical. In the case of HANK, we use the marginal utility evaluated at aggregate consumption (i.e.,
λt = c−γ

t ), as in McKay and Wolf (2022), and we just set the discount factor for unions equal to the one for
firms to keep the models as comparable as possible.
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and so

W̃ ∗
t − W̃t = (1− β̄θw)Et

∑
τ≥t

(
β̄θw

)τ−t(
ϕℓ̃τ − λ̃τ +

τ∑
s=t+1

(πws − ζwπs−1)− w̃τ

)
,

where w̃τ ≡ W̃τ − p̃τ . We will define χτ = φℓ̃τ − λ̃τ − w̃τ to be the labor wedge. Recall

that, under our assumptions, we in the HANK model have that λ̃t = −γc̃t where c̃t is

log-deviations of aggregate consumption.

From the definition of the wage index we have

πwt =
1− θw
θw

(W̃ ∗
t − W̃t) + ζwπt−1.

Combining these relations we get

πwt − ζwπt−1 =
(1− θw)(1− βθw)

θw
Et
∑
τ≥t

(
β̄θw

)τ−t(
χτ +

τ∑
s=t+1

(πws − ζwπs−1)

)

Applying cognitive discounting:

πwt − ζwπt−1 =
(1− θw)(1− β̄θw)

θw
Et
∑
τ≥t

(
β̄θwm

)τ−t(
χτ +

τ∑
s=t+1

(πws − ζwπs−1)

)

This expression has the same structure as (C.5). Operating exactly in the same way as

before we obtain

πwt − ζwπt−1 = κwχt + βθwm

[
1 +

κw
1− βθwm

]
Et
[
πwt+1 − ζwπt

]
With full wage indexation this gives the wage-NKPC used in our main analysis:

πwt − πt−1 = κwχt + βwEt
[
πwt+1 − πt

]
(C.7)

C.4 Model calibration and estimation

We now discuss the parameterization of our models. We proceed in two steps—first the

calibration part, and then the estimation.
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Parameter Description Value Target

1/γ EIS 0.5 Standard
1/φ Frisch elasticity 0.5 Standard
r̄ Real interest rate (annual) 0.04 Real interest rate
α Capital share 0.36 Christiano et al. (2005)
δ Depreciation rate (anual) 0.1 Christiano et al. (2005)

δ1, δ2 Dividend pay-out process 0.2, 0.05 Capital Gains MPC
τ̄ℓ Labor tax rate 0.3 Average Labor Tax
τ̄ /ȳ Transfers 0.05 Wolf (2023)
b̄/ȳ Steady state liquid assets 1.04 Kaplan et al. (2018)
1/η Liquid assets duration (quarters) 5 Kaplan et al. (2018)
τ ℓb Speed of fiscal adjustment 0.15 Gradual fiscal adjustment

Table C.3: Calibrated model parameters.

Calibration. For all three models, we calibrate the elasticity of intertemporal substitu-

tion and the Frisch elasticity to be 1
2
, which are standard values in the literature. For RANK,

we set β = 0.99 (quarterly) in order to get a real interest rate of 4 percent annualized. For

HANK, we pick β in order to match the same steady-state level of assets for all models. We

calibrate the idiosyncratic income process for HANK from Kaplan et al. (2018).

We set the capital share to α = 0.36 and depreciation rate to δ = 0.025 quarterly, which is

consistent with the values used in Christiano et al. (2005). The dividend distribution process

is parameterized by assuming δ1 = 0.2 and δ2 = 0.05, which ensures a gradual payment of

dividends and therefore low consumption response from capital gains.37

We follow Wolf (2023) for the steady state calibration of the fiscal side. We assume a

labor tax rate τ̄ℓ of 0.3, and set transfers to be 5 percent of GDP. The steady state level of

nominal assets is set to 27 percent of annual GDP, as in Kaplan et al. (2018). Government

debt maturity is calibrated to η = 0.2, which implies an average debt duration of 5 quarters.

The steady-state level of government expenditure is set such that the budget constraint holds

in steady state, which yields ḡ
ȳ
= 0.1395. We assume that all dynamic fiscal adjustment is

done via labor taxes, with τ ℓb = 0.15. This implies gradual fiscal adjustment, in line with the

range considered in Auclert et al. (2020).

A summary of the calibrated parameter values is provided in Table C.3.38

37As long as the pay-out is gradual, our results are not sensitive to the specific values used.
38The baseline determinacy-induced monetary policy rule that we consider sets ρ = 0.85, ϕπ = 2, ϕy = 0.25,

and ϕ∆y = 0.3. Recall that this choice of rule only matters for our illustrative results in Figures 3 and 4.
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Estimation. We estimate all models to ensure consistency with the empirical monetary

policy shock impulse response targets θ̂ν . For the baseline RANK model we estimate five

parameters: the strength of habits (h), the degrees of price as well as wage rigidity (θp

and θw), the curvature of investment adjustment costs (κ), and the curvature of capacity

utilization costs (ζ). For the baseline HANK model, the household information stickiness

parameter (θ) replaces the degree of habit formation (h). Finally, for the behavioral models,

consider the case of m fixed and set to m = 0.65, at the lower end of the range considered

by Gabaix (2020). We make this choice because our data are only weakly informative about

m, as is implicit in the results displayed in Table 4.1.

Table C.4 summarizes the posterior distributions of all estimated parameters. We see

that, for h, κ and ψ, posterior distributions are relatively close to the prior. On the other

hand, the distributions of θp, θw and θ are meaningfully affected. In the cases of θp and θw,

the level of price and wage stickiness required to fit the impulse responses is relatively large,

especially for prices; this reflects the known mismatch between micro level and macro level

estimates of price rigidity, with macro estimates pointing towards much stickier prices than

micro evidence. For the case of θ, a higher degree of informational stickiness is required

to fit the empirical impulse responses than the one encoded in the prior. The degree of

information rigidity is close to the one inferred in Auclert et al. (2020).

70



Prior Posterior
Model Parameter Dist. Mean St. Dev Mode Mean Median 5 percent 95 percent

RANK - RE h Beta 0.70 0.10 0.7240 0.7082 0.7157 0.5335 0.8571
θp Beta 0.67 0.20 0.9485 0.8622 0.9136 0.5598 0.9804
θw Beta 0.67 0.20 0.8860 0.7544 0.8091 0.3706 0.9657
κ Normal 5.00 1.50 5.0527 5.2668 5.2512 2.9409 7.6503
ψ Beta 0.50 0.15 0.4621 0.4665 0.4645 0.2247 0.7175

HANK - RE θ Beta 0.70 0.20 0.9526 0.7985 0.8414 0.4655 0.9813
θp Beta 0.67 0.20 0.9521 0.8527 0.9070 0.5381 0.9822
θw Beta 0.67 0.20 0.9031 0.7664 0.8215 0.3860 0.9683
κ Normal 5.00 1.50 5.3003 5.2477 5.2396 2.8847 7.6453
ψ Beta 0.50 0.15 0.4654 0.4678 0.4648 0.2247 0.7212

RANK - CD h Beta 0.70 0.10 0.7102 0.7112 0.7187 0.5373 0.8609
θp Beta 0.67 0.20 0.8641 0.8664 0.9061 0.6166 0.9769
θw Beta 0.67 0.20 0.9462 0.7564 0.8118 0.3691 0.9646
κ Normal 5.00 1.50 5.2998 5.3312 5.3211 3.0123 7.6935
ψ Beta 0.50 0.15 0.4701 0.4714 0.4686 0.2292 0.7244

HANK - CD θ Beta 0.70 0.20 0.9600 0.8112 0.8553 0.4866 0.9847
θp Beta 0.67 0.20 0.8544 0.8467 0.8917 0.5507 0.9794
θw Beta 0.67 0.20 0.9511 0.7860 0.8483 0.4005 0.9711
κ Normal 5.00 1.50 5.3222 5.3264 5.3186 2.9636 7.7030
ψ Beta 0.50 0.15 0.4692 0.4607 0.4571 0.2244 0.7119

Table C.4: Prior and posterior distributions of structural parameters. RE denotes that the model assumes rational expectations
(m = 1), whereas CD indicates that the model features cognitive discounting in price and wage setters (with m = 0.65).
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D Supplementary details for empirical applications

This appendix contains supplementary results for our three monetary policy counterfactual

applications in Section 5.

D.1 Average business cycle

We here substantiate our claims that the headline finding of Section 5.2—i.e., that meaningful

volatility reductions in output and, to a lesser extent, inflation would have been feasible—are

driven by neither the Great Recession nor by the policy causal effect extrapolation embedded

in our structural models (i.e, by the Plus step).

We begin in Figure D.1 by instead constructing counterfactual volatilities with reduced-

form forecasts obtained on a sample that only stretches to 2007:Q1. We see that the picture

is essentially unchanged relative to Figure 5: inflation and in particular output gap volatility

reductions are feasible, at the cost of somewhat more volatile interest rates. This robustness

is not surprising: the main business-cycle shock of Angeletos et al. (2020) meaningfully moves

aggregate output even on pre-ZLB samples (while having rather little effect on inflation), so

the exact same logic from our discussion in Section 5.2 continues to apply.

Next, in Figure D.2, we repeat our baseline analysis, but now minimizing (19) using only

the matched policy shock impulse responses θ̂ν , rather than the entirety of the model-implied

policy causal effect matrices Θν . Qualitatively, the exact same picture emerges as before:

inflation and in particular output are less volatile, while interest rates are somewhat more

volatile. The intuition is yet again immediate from our analysis of the main business-cycle

shock in Figure 6: through nominal interest rate cuts—including those directly matched in

θ̂ν—the policymaker can meaningfully reduce the volatility of output fluctuations.39 It is

thus the empirical VAR step—and not the additional structural assumptions embedded in

the Plus step—that drive the headline takeaways of Section 5.2, as claimed.

D.2 Great Recession

Figure D.3 constructs the Great Recession counterfactual using only the matched policy

shock impulse responses θ̂ν (rather than all of Θν). As before, we here use θ̂ν to enforce the

counterfactual policy rule of interest as well as possible.

39The only difference is quantitative: the entire matrix of monetary policy causal effects Θν allows the
policymaker to tailor her interest rate response even better.
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Figure D.1: Counterfactual early-sample (1960:Q1 – 2007:Q1) average volatilities of inflation,
output, and the federal funds rate, under the policy rule that minimizes (19). Black dashed: data
point estimate under observed policy. Blue: posterior Kernel density of counterfactual volatilities
drawing from posterior across all models and parameters. Beige: posterior mode of counterfactual
using RANK models (baseline and behavioral). Red: posterior mode of counterfactual using HANK
models (baseline and behavioral).

Figure D.2: Counterfactual average volatilities of inflation, output, and the federal funds rate,
under the policy that minimizes (19). Black dashed: data point estimate. Blue: posterior Ker-
nel density of estimates drawing from posterior across all models and parameters, using only the
matched policy shock impulse responses θ̂ν .

The resulting counterfactuals are again broadly similar to our main results in Figure 7:

the nominal interest rate is cut aggressively, leading to more stable output, at the cost of

elevated inflation. Moving from the restricted policy causal effect space θ̂ν to the entirety of

Θν smoothes out the rate cut and helps somewhat better stabilize output; that being said,

the differences are relatively small, suggesting that the counterfactual policy does not rely

much on model-implied extrapolation to the causal effects of interest rates forward guidance.
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Figure D.3: Counterfactual evolution of inflation, output, and the federal funds rate in the Great
Recession, under the policy that minimizes (19) without any effective lower bound on rates. Black:
data. Blue: posterior median (solid) and 16th and 84th percentile bands (shaded), using only the
matched policy shock impulse responses θ̂ν .

It is thus yet again the VAR step—and not the additional structure of the Plus step—that

drives our findings in this second application.

D.3 Post-covid inflation

Figure D.4 complements the analysis in Section 5.4 by constructing the post-covid inflation

forecasting counterfactual using only the matched monetary policy shock impulse responses

θ̂ν (and not all of Θν). Recall that the disagreement across models discussed in Section 5.4

was precisely related to the model-based extrapolation from θ̂ν to the rest of Θν : in the

rational-expectations models, the policymaker leverages small real rate hikes in the far future

to stabilize inflation today; in the behavioral models, this is not possible, so interest rates

are instead hiked already today.

As expected, Figure D.4 reveals that, when not relying on any extrapolation, the coun-

terfactual looks much closer to the behavioral case: interest rates are actually hiked more

aggressively, and that then leads to moderate declines in inflation and output. This third

application is thus a clear example of where the additional extrapolation of the Plus step

matters greatly for the final results.

74



Figure D.4: Counterfactual projections of inflation, output, and the federal funds rate in the
post-covid inflationary episode (from 2021:Q2), under the policy that minimizes (19). Policy causal
effects from posterior across all models and parameters, but using only the matched policy shock
impulse responses θ̂ν . Black: data. Grey: actual forecast. Blue: posterior median (solid) and 16th
and 84th percentile bands (shaded).
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